// @(#)root/mathmore:$Id: WrappedTF1.h 26946 2008-12-16 10:47:01Z moneta $ // Author: L. Moneta Wed Sep 6 09:52:26 2006 /********************************************************************** * * * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT * * * * * **********************************************************************/ // Header file for class WrappedTFunction #ifndef ROOT_Math_WrappedTF1 #define ROOT_Math_WrappedTF1 #ifndef ROOT_Math_IParamFunction #include "Math/IParamFunction.h" #endif #ifndef ROOT_TF1 #include "TF1.h" #endif #include namespace ROOT { namespace Math { /** Class to Wrap a ROOT Function class (like TF1) in a IParamFunction interface of one dimensions to be used in the ROOT::Math numerical algorithms The parameter are stored in this wrapper class, so the TF1 parameter values are not used for evaluating the function. We use TF1 only for the function evaluation. This allows for the copy of the wrapper function without the need to copy the TF1. The wrapper does not own the TF1 pointer, so it assumes it exists during the wrapper lifetime @ingroup CppFunctions */ class WrappedTF1 : public ROOT::Math::IParamGradFunction { public: typedef ROOT::Math::IParamGradFunction BaseGradFunc; typedef ROOT::Math::IParamGradFunction::BaseFunc BaseFunc; WrappedTF1() {} /** constructor from a function pointer. */ WrappedTF1 ( TF1 & f ) : fLinear(false), fPolynomial(false), fFunc(&f), fParams(f.GetParameters(),f.GetParameters()+f.GetNpar()) { // init the pointers for CINT if (fFunc->GetMethodCall() ) fFunc->InitArgs(fX, &fParams.front() ); // distinguish case of polynomial functions and linear functions if (fFunc->GetNumber() >= 300 && fFunc->GetNumber() < 310) { fLinear = true; fPolynomial = true; } // check that in case function is linear the linear terms are not zero if (fFunc->IsLinear() ) { unsigned int ip = 0; fLinear = true; while (fLinear && ip < fParams.size() ) { fLinear &= (fFunc->GetLinearPart(ip) != 0) ; ip++; } } } /** Destructor (no operations). TF1 Function pointer is not owned */ virtual ~WrappedTF1 () {} /** Copy constructor */ WrappedTF1(const WrappedTF1 & rhs) : BaseFunc(), BaseGradFunc(), fLinear(rhs.fLinear), fPolynomial(rhs.fPolynomial), fFunc(rhs.fFunc), fParams(rhs.fParams) { fFunc->InitArgs(fX,&fParams.front() ); } /** Assignment operator */ WrappedTF1 & operator = (const WrappedTF1 & rhs) { if (this == &rhs) return *this; // time saving self-test fLinear = rhs.fLinear; fPolynomial = rhs.fPolynomial; fFunc = rhs.fFunc; fFunc->InitArgs(fX, &fParams.front() ); fParams = rhs.fParams; return *this; } /** @name interface inherited from IFunction */ /** Clone the wrapper but not the original function */ ROOT::Math::IGenFunction * Clone() const { return new WrappedTF1(*this); } /** @name interface inherited from IParamFunction */ /// get the parameter values (return values cachen inside, those inside TF1 might be different) const double * Parameters() const { return &fParams.front(); } /// set parameter values (only the cached one in this class,leave unchanges those of TF1) void SetParameters(const double * p) { std::copy(p,p+fParams.size(),fParams.begin()); } /// return number of parameters unsigned int NPar() const { return fParams.size(); } /// return parameter name (this is stored in TF1) std::string ParameterName(unsigned int i) const { return std::string(fFunc->GetParName(i)); } using BaseGradFunc::operator(); /// evaluate the derivative of the function with respect to the parameters void ParameterGradient(double x, const double * par, double * grad ) const { if (!fLinear) { // need to set parameter values fFunc->SetParameters( par ); static const double kEps = 0.001; fFunc->GradientPar(&x,grad,kEps); } else { unsigned int np = NPar(); for (unsigned int i = 0; i < np; ++i) grad[i] = DoParameterDerivative(x, par, i); } } private: /// evaluate function passing coordinates x and vector of parameters double DoEvalPar (double x, const double * p ) const { fX[0] = x; if (fFunc->GetMethodCall() ) fFunc->InitArgs(fX,p); // needed for interpreted functions return fFunc->EvalPar(fX,p); } /// evaluate function using the cached parameter values of this class (not of TF1) /// re-implement for better efficiency double DoEval (double x) const { // no need to call InitArg for interpreted functions (done in ctor) // use EvalPar since it is much more efficient than Eval fX[0] = x; return fFunc->EvalPar(fX,&fParams.front()); } /// return the function derivatives w.r.t. x double DoDerivative( double x ) const { static const double kEps = 0.001; // parameter are passed as non-const in Derivative double * p = const_cast(&fParams.front() ); return fFunc->Derivative(x,p,kEps); } /// evaluate the derivative of the function with respect to the parameters double DoParameterDerivative(double x, const double * p, unsigned int ipar ) const { // not very efficient - use ParameterGradient if (! fLinear ) { std::vector grad(NPar()); ParameterGradient(x, p, &grad[0] ); return grad[ipar]; } else if (fPolynomial) { // case of polynomial function (no parameter dependency) return std::pow(x, static_cast(ipar) ); } else { // case of general linear function (bbuilt with ++ ) const TFormula * df = dynamic_cast( fFunc->GetLinearPart(ipar) ); assert(df != 0); fX[0] = x; // hack since TFormula::EvalPar is not const return (const_cast ( df) )->EvalPar( fX ) ; // derivatives should not depend on parameters since func is linear } } bool fLinear; // flag for linear functions bool fPolynomial; // flag for polynomial functions TF1 * fFunc; // pointer to ROOT function mutable double fX[1]; //! cached vector for x value (needed for TF1::EvalPar signature) std::vector fParams; // cached vector with parameter values }; } // end namespace Fit } // end namespace ROOT #endif /* ROOT_Fit_WrappedTF1 */