First Results from the Online Radiation Dose Monitoring System in **ATLAS Experiment**

lgor Mandić^a, V. Cindro^a, M. Deliyergiyev^a, A. Gorišek^a, G. Kramberger^a, M. Mikuž^{a,b}, J. Hartert^c, S. Franz^d, I. Dawson^e, P. Miyagawa^e, L. Nicolas^e on behalf of ATLAS collaboration ^a Jožef Stefan Institute, Ljubljana, Slovenia, ^bFaculty of Mathematics and Physics, University of Ljubljana, Slovenia, ^cPhysikalisches Institut Universität Freiburg, Germany, ^dCERN, Geneva, Switzerland,^e University of Sheffield, UK igor.mandic@ijs.si

- detectors and electronics in ATLAS experiment will be exposed to large doses of radiation: TID > 100 kGy, Φ_{eq} > 10¹⁴ n/cm²
- online Radiation dose monitoring system measures accumulated ionizing dose in SiO₂, displacement damage in silicon and fluences of thermal neutrons.
- continuous monitoring of doses necessary to understand performance of the detector
- doses are monitored at 14 locations in the Inner Detector and at 48 locations at larger radii
- sensors are read out every 60 minutes and readings are stored in the database.
- → results of dose measurements after 2 years of ATLAS data taking are presented

NIEL measurements with diodes **TID measurements** with RadFETs • hadrons cause bulk damage in silicon consequence: increased resistance, reduction of carrier lifetime, increase of reverse current → forward bias: voltage at given forward current increases • RadFETs: p-MOS transistor → reverse bias: increase reverse current

Back side

Thermal neutrons

• bipolar transistors (DMILL) used in front end ASICs • measure base current at given collector current

2 ²	<u> </u>	
1.8	Base Current at Ic = 10 $\ \mu$ A]

in the gate oxide: $\Delta V = a x (TID)^{b}$ oxide thickness:

Fluka simulations

Radiation backgrounds have been simulated in the ID using the

4 cm

- FLUKA particle transport code
- PHOJET event generator
- simulations done for $\sqrt{s} = 7$ TeV assuming a proton-proton inelastic cross section 77.5 mb as predicted by PHOJET
- ionizing dose in Si0₂ and displacement damage in silicon calculated from simulated particle fluxes
- · predictions of doses in Gy and fluences of 1 MeV equivalent neutrons normalized to unit of integrated luminosity

Doses and fluences per fb ⁻¹ of integrated luminosity			
Location	Coordinates	Dose (Gy)	1 MeV equivalent neutron fluence (10 ¹¹ n/cm ⁻²)
Pixel support tube	r= 23 cm	110	2.22

RESULTS

Data up to 20th September 2011 Integrated luminosity ~ 3.4 fm⁻¹

Inner detector

14 monitoring locations in the Inner Detector:

• 4 on Pixel Support Tube (r = 23 cm, |z| = 90 cm) • 4 on ID end plate small radius (r = 54 cm, |z| = 345 cm) • 4 on ID end plate large radius (r = 80 cm, |z| = 345 cm) • 2 on Cryostat wall (r = 100 cm, z = 0)

Tile Calorimeter Liquid Argon Muon Detectors **Toroid Magnets** Calorimeter Semiconductor Transition Radiation **Pixel Detector** Tracker Tracker Solenoid Magnet Inner Detector Outside of inner detector • 48 monitoring locations in muon detectors, calorimeters and on PP2 - 16 in muon detectors - 22 in calorimeters - 10 near electronics on patch panel 2 (r \sim 5.2 m) • doses on the limit of sensitivity: TID < 0.1 Gy, NIEL < 1e10 n/cm²

Leakage current in silicon strip detectors in ATLAS SCT increases because of radiation damage. Good agreement between measurements and predictions from Fluka simulation!

