Online Radiation Dose Measurement System for ATLAS experiment

I. Mandić^a, V. Cindro^a, I. Dolenc^a, A. Gorišek^a, G. Kramberger^a, M. Mikuž^{a,b}, J. Hartert^c, J. Bronner^c, S. Franz^d

^aJožef Stefan Institute, Jamova 39, Ljubljana, Slovenia ^bFaculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia ^cPhysikalisches Institut Universität Freiburg, Hermann-Herder-Str. 3, Freiburg, Germany ^dCERN, Geneva, Switzerland

The ATLAS experiment

- experiment at the Large Hadron Collider at CERN
- proton-proton collisions, $E_p = 7$ TeV, Luminosity = 10^{34} cm⁻²s⁻¹

Radiation Field in ATLAS

- secondary particles from p-p interaction point mostly pions
- radiation from interaction of secondary particles with detector material neutrons

Radiation levels after 10 years of LHC operation:

- Total lonizing Dose (TID): TID > 100 kGy
- Non Ionizing Energy Loss (NIEL): $\Phi_{eq} > 10^{15} \text{ n/cm}^2$ (1 MeV equivalent neutrons in Si)
- Thermal neutrons $\Phi \sim 10^{15} \; \text{n/cm}^2$
 - such radiation levels cause damage to detectors and readout electronics
 - → dose monitoring necessary to understand detector performance
 - ➔ cross check of simulations and make predictions

I. Mandić, ANIMMA 2009, June 7-10, Marseille, France

1 MeV equivalent neutrons

TID measurements with RadFETs

- RadFETs: p-MOS transistor
- holes created by radiation get traped in the gate oxide:
 - → increase of threshold voltage with dose: $\Delta V = a \times (TID)^{b}$
- sensitivity and dynamic range depend on oxide thickness:

characterizations, selection, calibrations done by CERN RADMON team:
 F. Ravotti, M. Glaser, M. Moll....

NIEL measurements with diodes

- hadrons cause bulk damage in silicon. Consequences:
 - increased resistance, increase of reverse current.....
 - → forward bias: forward voltage at given forward current increases
 - → reverse bias: increase reverse current

Forward bias

- linear response $\Delta V = k \cdot \Phi_{eq}$ (V measured at I = 1 mA)
- high sensitivity diode (CMRP, University of Wollongong, AU) 10⁹ to ~10¹² n/cm²,
- commercial silicon PIN photodiode BPW34F 10¹² to ~10¹⁵ n/cm²

NIEL measurements with diodes

Reverse bias

Reverse current proportional to fluence $I = \Phi_{eq}/\alpha V$

- 25 μm x 0.5 cm x 0.5 cm pad diode with guard ring structure processed on epitaxial silicon
 - → thin epitaxial diode can be depleted with V_{bias} < 30 V also after irradiation with 10¹⁵ n/cm²
 - → in this fluence and time range V_{bias} does not increase with annealing
- suitable for fluences from 10^{11} n/cm² to 10^{15} n/cm²

Thermal neutrons

- bipolar transistors (DMILL) used in front end ASICs
- measure base current at given collector current

→ sensitive to fast and thermal neutrons

Radiation Monitor Sensor Board (RMSB)

Inner Detector

- for dose monitoring in the Inner Detector:
 - large range of doses
 - no access in 10 years
 - ➔ need many sensors

- large temperature variations (-10 to 20°C) at some locations
 - ➔ stabilize temperature to 20 ± 1 °C by heating back side of the ceramic hybrid

Thick film resistive layer R = 320 Ω

Back side

I. Mandić, ANIMMA 2009, June 7-10, Marseille, France

Radiation Monitor Sensor Board (RMSB)

Other locations

- lower dose ranges
 → mGy to 10 Gy, 10⁹ to ~10¹² n/cm²
- no temperature stabilization
- → correct read out values with known temperature dependences

Readout

• use standard ATLAS Detector Control System components

• ELMB:

- 64 ADC channels
- can bus communication
- ELMB-DAC:
 - current source, 16 channels $(I_{max} = 20 \text{ mA}, U_{max} = 30 \text{ V})$
- sensors are biased only during readout (~ few minutes every hour)
- software written in PVSS
- readout values available in the ATLAS control room and archived for offline analysis

Monitoring locations

• 14 monitors in the Inner Detector

- system with 2 ID-type RMSBs installed in the IRRAD6 irradiation facility at CERN in 2008
- mixture of pions, protons, neutrons, photons
- low dose rates, beam on-off
 - ➔ similar conditions as in ATLAS
- SEC counter Secondary Emission Counter (SEC): counts number of protons in primary beam
 → this number is proportional to the dose at RMSB location

F. Ravotti, M. Glaser et al., *IEEE TNS Vol.* 54 (4), pp. 1170-1177, 2007.

<u>TID</u>

• SEC counts converted to dose (Gy) with alanine dosimeter

→ dose 410 ± 20 Gy measured with alanine at the end of beam period (at 4000 h)

<u>NIEL</u>

0.010¹² n/cm²

1000

2000

3000

4000

SEC counts converted to 1 MeV equivalent neutron fluence with epitaxial diode on RMSB
 → fluence Φ_{eq} = 6.5·10¹² n/cm² at the end of beam period (at t = 4000 h)

All diodes:

- epi -> reverse bias
- BPW34 -> forward bias
- CMRP -> forward bias

→ epi and BPW34 corrected for annealing

> <mark>epi</mark> BPW34

CMRP SEC (epi)

5000

6000

I. Mandić, ANIMMA 2009, June 7-10, Marseille, France

Time (h)

Thermal neutrons

- base current I_b measured at collector current $I_c = 10 \ \mu A$
 - 1. monitor current gain $\beta = I_c / I_b$
 - 2. measure fluence of thermal neutrons:
 - → Φ_{th} = 1/k_{th} ($\Delta I_b/I_c k_{eq} \cdot \Phi_{eq}$), Φ_{eq} : measured with BPW34

Summary

- system for online radiation monitoring in ATLAS detector:
 - → total ionizing dose in Si0₂
 - → bulk damage in silicon: 1 MeV equivalent neutron fluence
 - → fluence of thermal neutrons (Inner Detector only)
 - ➔ readout compatible with ATLAS Detector Control System
- tests in mixed radiation environment
 - → sufficient sensitivity: TID ~ mGy, Φ_{eq} ~ 10⁹ n/cm²
 - → sufficient accuracy: ~ 20%
 - → annealing effect can be controlled

complete system was installed and integrated in ATLAS DCS in 2008

- ➔ few months of data taking in 2008
- ➔ good stability

Ready to measure doses!

Appendix: Tests in Mixed Radiation Environment

• increase of current ΔI measured at time *t* in IRRAD6 after time interval Δt :

$$\Delta I = \alpha V \Delta \Phi - \frac{dI(t)}{dt} \cdot \Delta t$$

$$\Delta I = \alpha V \Delta \Phi - \frac{I_1(t)}{\tau} \cdot \Delta t$$

$$I_1(t) = I(t) - V \alpha_0 \Phi(t)$$

$$\alpha = \alpha_1 + \alpha_0$$

$$\Delta \Phi = \frac{1}{\alpha V} \left(\Delta I + \frac{I_1(t)}{\tau} \cdot \Delta t \right).$$

Appendix: Tests in Mixed Radiation Environment

Annealing:

