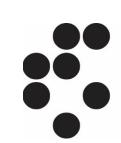


JENAS 2025, Apr 8 – 11, 2025 Harwell Campus, Didcot, Oxfordshire


Detector R&D in Particle Physics

Univerza v Ljubljani

University of Ljubljana and J. Stefan Institute

Contents

Introduction: ECFA Detector R&D Roadmap and its implementation

Gas and semiconductor based tracking detectors

Photo-sensors and particle identification

Calorimetry

Electronics + Data acquisition

Quantum sensors

A very broad range of topics for a single talk – very hard to cover all interesting developments
 → Some examples, also partly reflecting my own interests ☺

Neutrino, DM detectors: talk by Roxanne Guenette

April 9, 2025

JENAS 2025, RAL

ECFA Detector R&D Roadmap

The ECFA Detector R&D Roadmap, developed following the 2020 European Strategy for Particle Physics, outlines a long-term vision to advance detector technologies critical for future particle physics experiments. It emphasizes strategic planning and investment in areas like

- sensor development (gaseous, liquid, solid-state),
- photon detection,
- quantum sensing,
- calorimetry, and
- integrated electronics.

The roadmap highlights the need for coordinated European efforts, robust infrastructure, training, and industrial partnerships.

Strategic recommendations address challenges such as rising R&D costs, sustainability, and the retention of expert talent to ensure Europe remains a global leader in detector innovation.

It also provides a list of detector research and development themes - DRDTsApril 9, 2025JENAS 2025, RALPeter Križan, Ljubljana

Detector research and development themes (DRDTs)

			•
	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with	
	DRDT 1.2	long-term stability Achieve tracking in gaseous detectors with dE/dx and dN/dx capability	
Gaseous		in large volumes with very low material budget and different read-out schemes	
	DRDT 1.3	Develop environmentally friendly gaseous detectors for very large	
	DRDT 1.4	areas with high-rate capability Achieve high sensitivity in both low and high-pressure TPCs	
	DRDT 2.1	Develop readout technology to increase spatial and energy	
	DRDT 2.2	resolution for liquid detectors Advance noise reduction in liquid detectors to lower signal energy	
Liquid		thresholds	
	DRDT 2.3	Improve the material properties of target and detector components in liquid detectors	
	DRDT 2.4	Realise liquid detector technologies scalable for integration in large systems	
	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors	
Solid	DRDT 3.2	Develop solid state sensors with 4D-capabilities for tracking and	
state	DRDT 3.3	calorimetry Extend capabilities of solid state sensors to operate at extreme	
	DRDT 3.4	fluences Develop full 3D-interconnection technologies for solid state devices	
		in particle physics	
PID and	DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors	
Photon	DRDT 4.2	Develop photosensors for extreme environments	
	DRDT 4.3	Develop RICH and imaging detectors with low mass and high resolution timing	
	DRDT 4.4	Develop compact high performance time-of-flight detectors	
		Promote the development of advanced quantum sensing technologies	
uantum	DRDT 5.2	Investigate and adapt state-of-the-art developments in quantum technologies to particle physics	
antum	DRDT 5.3	Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies	
	DRDT 5.4	Develop and provide advanced enabling capabilities and infrastructure	
	DRDT 6.1	Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution	
lorimetry	DRDT 6.2	Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods	
	DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up	
		environments	
	DRDT 7.1	Advance technologies to deal with greatly increased data density	
	DRDT 7.2	Develop technologies for increased intelligence on the detector	-
ectronics	DRDT 7.3	Develop technologies in support of 4D- and 5D-techniques	
ectromes	DRDT 7.4	Develop novel technologies to cope with extreme environments and	-
	DRDT 7.5	required longevity Evaluate and adapt to emerging electronics and data processing	_
		technologies Develop novel magnet systems	
		Develop improved technologies and systems for cooling	
		Adapt novel materials to achieve ultralight, stable and high	
tegration		precision mechanical structures. Develop Machine Detector Interfaces.	
	DRDT 8.4	Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects	-

2040-

2035-

2030-

April 9, 2025

ECFA Detector R&D Roadmap implementation: Detector R&D (DRD) Collaborations

1. Gaseous	2. Liquid	3. Semiconductor	4. PID & Photon
e.g. time/spatial resolution;	e.g. Light/charge readout; low background	e.g. CMOS pixel sensors;	e.g. spectral range of photon sensors;
environment friendly gases	materials	High time resolution (10s ps)	Time resolution
5. Quantum	6. Calorimetry	7. Electronics	8. Integration
quantum sensors - R&D, incl. beyond QFTP in conventional detectors	e.g. Sandwich; noble liquid; optical	e.g. ASICs; FPGAs; DAQ	tracking detector mechanics

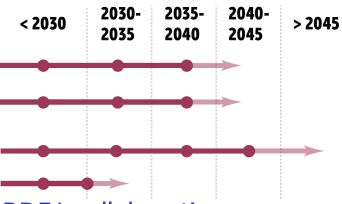
Chris Parkes, IOP APP+HEPP+NP Conference, April 2024

ECFA Detector R&D Roadmap implementation: Detector R&D (DRD) Collaborations

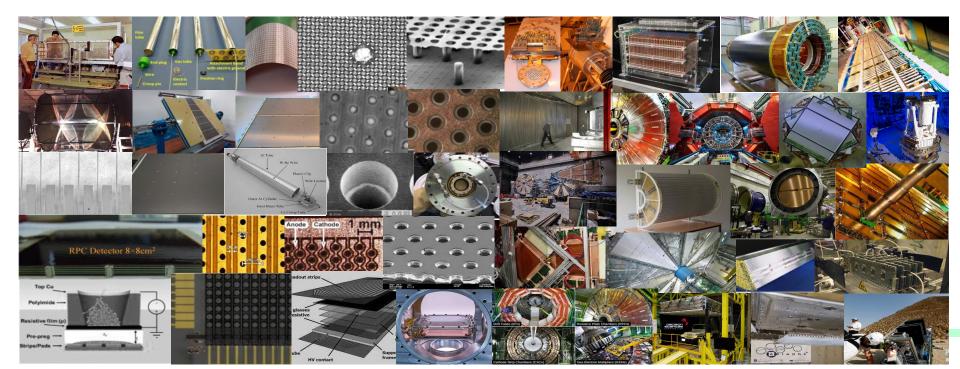
1. Gaseous	2. Liquid	3. Semiconductor	4. PID & Photon
e.g. time/spatial resolution; environment	e.g. Light/charge readout; low background materials	e.g. CMOS pixel sensors; High time	e.g. spectral range of photon sensors;
friendly gases	materials	resolution (10s ps)	Time resolution
5. Quantum	6. Calorimetry	7. Electronics	8. Integration
quantum sensors - R&D, incl. beyond QFTP	e.g. Sandwich; noble liquid; optical	e.g. ASICs; FPGAs; DAQ	tracking detector mechanics
^{ir} DRD collabora	tions have profited	in their formation ph	ase from

• experience in CERN RD Collaborations (e.g., RD50 and RD51)

EU based large detector R&D projects like AIDAinnova


d

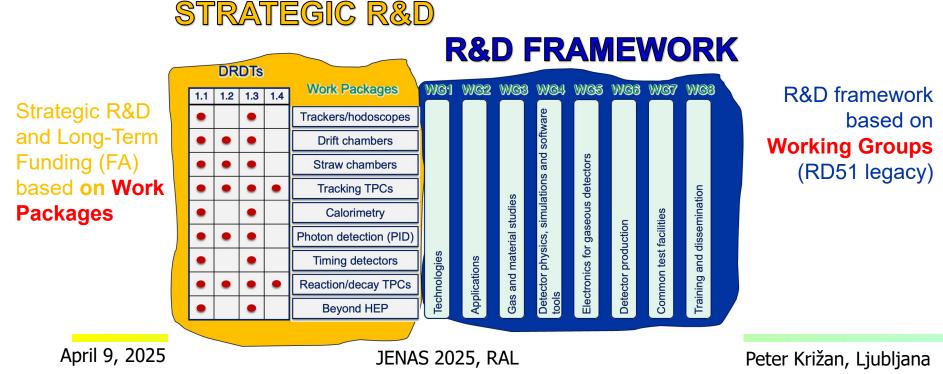
DRD1 – gaseous detectors


Detector R&D Themes (DRDTs)

Gaseous

- DRDT 1.1 Improve time and spatial resolution for gaseous detectors with long-term stability
 DRDT 1.2 Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out schemes
 DRDT 1.3 Develop environmentally friendly gaseous detectors for very large areas with high-rate capability
 - DRDT 1.4 Achieve high sensitivity in both low and high-pressure TPCs

Builds on the experience of the very successful RD51 collaboration



DRD1 – gaseous detectors

- Working Groups: serve as the backbone of R&D: provide a platform for sharing knowledge, expertise & efforts by supporting strategic detector R&D directions, facilitating the establishment of joint projects between institutes

- Work Packages: reflect the ECFA DRDTs: long-term projects addressing strategic R&D goals, outlined in the ECFA Detector R&D roadmap with dedicated funding lines

- Common Projects: enhance synergies in "blue sky" and generic R&D between institutes: short-term blue-sky R&D or common tool development with limited time and resources, supported by the Collaboration

DRD1 – gaseous detectors

Working group tasks

The collaborative structure of DRD1 keeps RD51 structure in Working Groups

Working-group conveners coordinate R&D tasks of the respective working groups. Two coordinators elected through a nomination process, approved by MB a

WG 1	WG 2	WG 3	WG 4	WG 5	WG 6	WG 7	WG 8
Technologies	Applications	Gas and material studies	Detector physics, simulations, and software tools	Electronics	Detector production	Common test facilities	Training and dissemination
Large Volume Detectors (Drift chambers, TPCs)	Trackers/Hodoscope	Measurement of Gas Properties	Garfield++	Front-End Electronics for Gaseous Detectors	Common Production Facilities and Equipments	Detector Laboratories Network	Knowledge Exchange and Facilitating Scientific Collaborations
MPGDs	Inner and Cenral Tracking with PID Capabilities: - Drift Chambers - Straw tubes - TPC	Studies on Eco-friendly Mixtures	Simulation of Large Charges and Space Charge	Modernised Readout Systems (DAQ): high performances	QA/QC	Test Beam Common Facilities	Training and Dissemination Initiatives
RPCs, MRPCs	Calorimetry	Ageing and Outgassing studies	Simulation of Detectors with Resistive Elements	Modernised Readout Systems (DAQ); FE Integration	Collaboration with Industrial Partner	Irradiation Common Facilities	Career Promotion
ТРС	Photon Detector (PID)	Gas sytems	Modelling and Simualtion of Eco-friendly Mixtures	Modernised Readout Systems (DAQ): portability	Gaseous Detector FORUM (know-how)	Specialized laboratories (outgassing/ageing, gas analysers, photocathodes)	Outreach and Education
Straw tubes, TGC, CSC, drift chambers, and other wire detectors	Timing Detectors (PID & Trigger)	Materials studies: - novel material (nanomaterial) - new material for wire - new converter	Optimization of Simulations (time, hw/sw resources)	Instrumentation (e.g. HV,LV, monitoring)		Common instrumentation and sofware	
New amplifying structures	TPC as reaction and decay chambers	Photocathodes	Specific Proceses (e.g. Electroluminescence)				
	Beyond HEP - Medical Application - Neutron Science - Muography - Space Applicatios - Oher (Dosimetry, Beam Monitoring, Cultural Heritage, Homeland Security,)	Precision Mechanics					

Piotr Gasik | 1st meeting of the DRDC | DRD1 Proposal | CERN

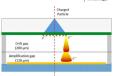
April 9, 2025

JENAS 2025, RAL

DRD1: Common projects

Common Project Example: Precise Timing with PICOSEC

✓ The PICOSEC concept overcomes timing limitations of gaseous detectors (goal is to achieve < 25 ps MIPs)
 ✓ Originally PICOSEC Micromegas initiated as the RD51 Common Project in 2015


Precise timing with PICOSEC Micromegas

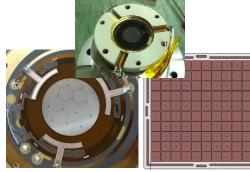
Primary charge production is localised in space and time by coupling Cherenkov radiator with photocathode and Micromegas amplification stage for precise timing.

Proof of concept started as **RD51 Common Project** in 2015 and initiated large collaborative effect addressing all aspects of detector optimisation and scaling: a <u>Clustering groups around new ideas</u> at photocathodes, readout electronics chain.

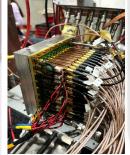
Picosec detection concept

Proof of concept with small prototypes

Regular shared SPS H4 test beams



TODAY: Active collaboration with multiple developments ongoing <u>in >10 institutes</u> working on PICOSEC technology including lab tests and common test beam activities:


-Tileable 10x10 pad detector modules have been tested in MIP test beams and provide good timing resolution also for signals shared across pads.

-Robust photocathodes (B₄C, DLC), **resistive multi-pad** Micromegas, and scalable readout electronics are implemented in 100-channel detector modules.

Scaling from single pad detectors to tileable multi-pad modules

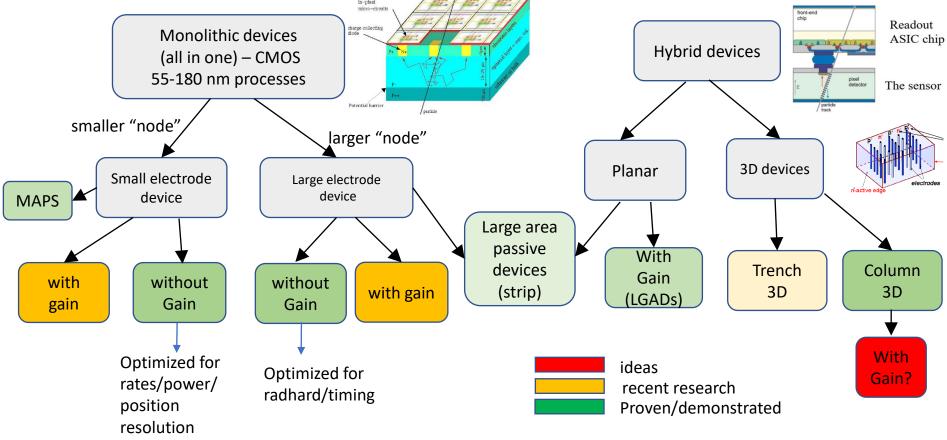
Future developments

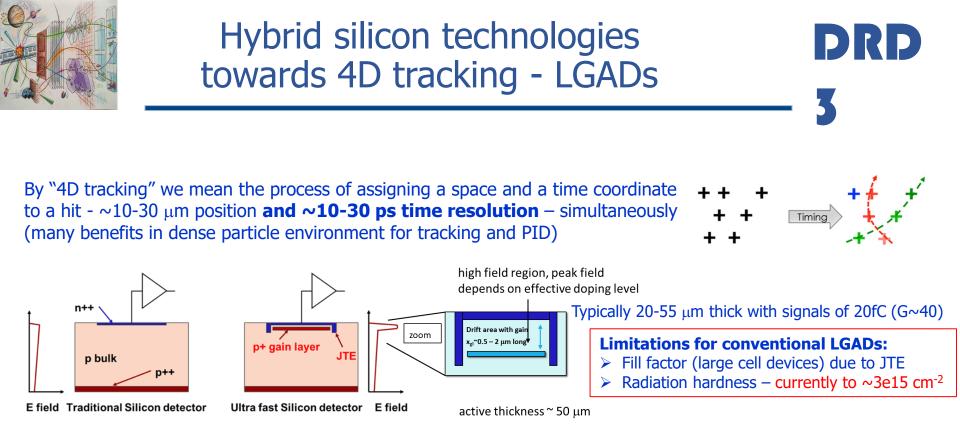
Spatial resolution: optimised pad size, charge sharing (resistive/capacitive)

Secondary emitters: minimise material budget, robustness against ion-back flow

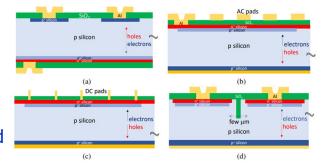
Amplification structure: optimised double/single gaps, mesh geometries/technologies, µRWELL

Electronics: waveform digitisation vs. threshold based timing, FE ASICs


... Waiting for a few R+D examples from the DRD1 leaders $\ensuremath{\textcircled{\odot}}$

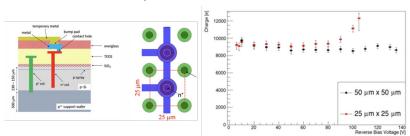

DRD3

C	Detecto	or R&D Themes (DRDTs)	< 2030	2030- 2035	2035- 2040	2040- 2045	> 2045
	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic			•	•	
Solid	DRDT 3.2	CMOS pixel sensors Develop solid state sensors with 4D-capabilities for tracking and calorimetry			•		\rightarrow
state	DRDT 3.3	Extend capabilities of solid state sensors to operate at extreme fluences					
	DRDT 3.4	Develop full 3D-interconnection technologies for solid state devices in particle physics			•	•	


Builds on the experience of the very successful RD50 collaboration

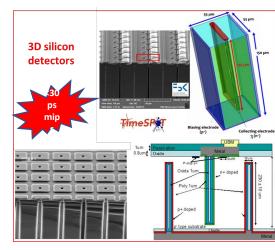
Improvements in radiation hardness: co-implantation of carbon in the gain layer (reduction of acceptor removal), was successfully mastered by several vendors
Fill factor: several different technologies proposed where the gain layer is not segmented and hence no gap in efficiency for small pitch devices: (a) Inverse LGADs, (b) AC-LGADs (c.) RSD LGADs and (d) Trench isolated LGADs

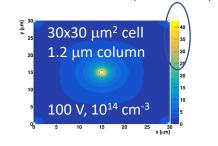
Hybrid silicon technologies towards 4D tracking – 3D detectors

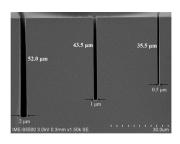

DRD

3D technology as timing detectors:

- \succ They have fill factor ~100% (inclined tracks)
- They are fast (small distance) and can be thick (LF less important)
- > The radiation tolerance of small cell size devices is large (for signal) and allows operation at higher bias voltages – shown up to ~1e17 cm⁻²
- Technology is already mature the latest 3D detectors are done in single-sided processing

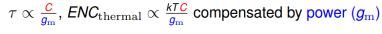

Directions of research – 3D sensors with gain

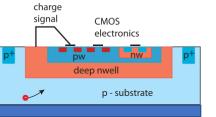

- \succ reduction of cell size
- > very small column width ("silicon wire proportional chamber")


FBK production

Column 3D

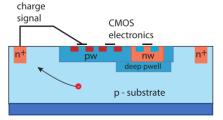
IMECAS - 8" CMOS process with aspect ratio of >70


Trench 3D (INFN - FBK/IME)


(CNM/FBK/Sintef/IME...)

Monolithic technologies – CMOS MAPS

LARGE ELECTRODE DESIGN



- Large electrode: $C \approx 300 \, \mathrm{fF}$
- Strong drift field, short drift paths, large depletion depth
- Higher power, slower
- Threshold $\sim 2000 \, \mathrm{e^{-}}$

Timing: large jitter and small distortion component - ~100 ps

SMALL ELECTRODE DESIGN

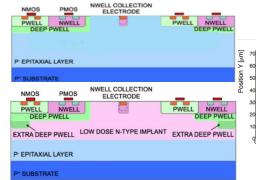
- Small electrode: $C \approx 3 \, \text{fF}$
- Low analogue power
- Faster at given power
- Difficult lateral depletion, process modifications for radiation hardness
- Threshold $\sim 300 \, \mathrm{e^{-}}$

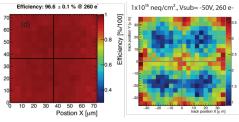
Timing: small jitter and large distortion/landau component ~ 1ns

The aim is to advance the performance of monolithic CMOS, combining sensing and readout elements, for future tracking applications, tackling the challenges of:

DRD

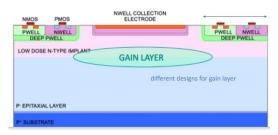
- very high spatial resolution;
- high data rate;
- high radiation tolerance;
- low mass:
- covering large areas;
- reducing power;
- keeping an affordable cost;

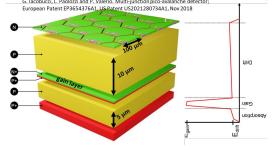

and ultimately combining these requirements in one single sensor device.



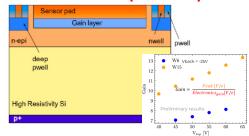
Monolithic technologies – CMOS MAPS

The main directions in MAPS research


- Development of modified processes uniform efficiency over the cell (not needed for visible light – cameras) for small cell devices
- > Develop timing capabilities for large cell design ~50 ps
- CMOS sensors with gain (faster, less power, better resolution)


DRD

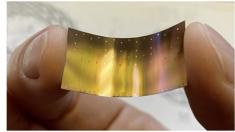
Cassia (CERN)

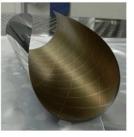

"deep junction" gain layer design in TJ180

PicoAdd SiGe130 nm (Uni-Geneve) G. lacobucci, L. Paolozzi and P. Valerio. Multi-junction pico-avalanche detector; European Patent EP3654376A1_US Patent US2021280734A1, Nov2018

SiGe bipolar amplifiers – fast (good timing)
 CMOS for digital electronics (monolithic)
 Gain-layer removed from the surface allowing very good spatial resolution without dead area

ARCADIA LF110 nm (INFN-TO)


 Back side processing
 High-field grows from the back side – high drift field at the back.
 First results Gain 7-13 – more soon!

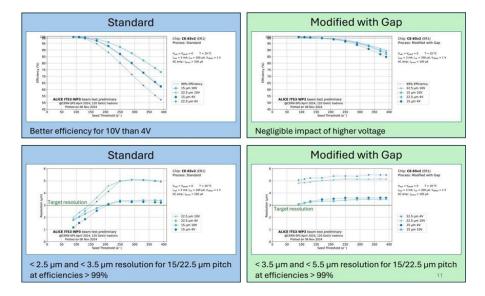


Monolithic technologies – CMOS MAPS **DRD**

The main directions in MAPS research (cont.)

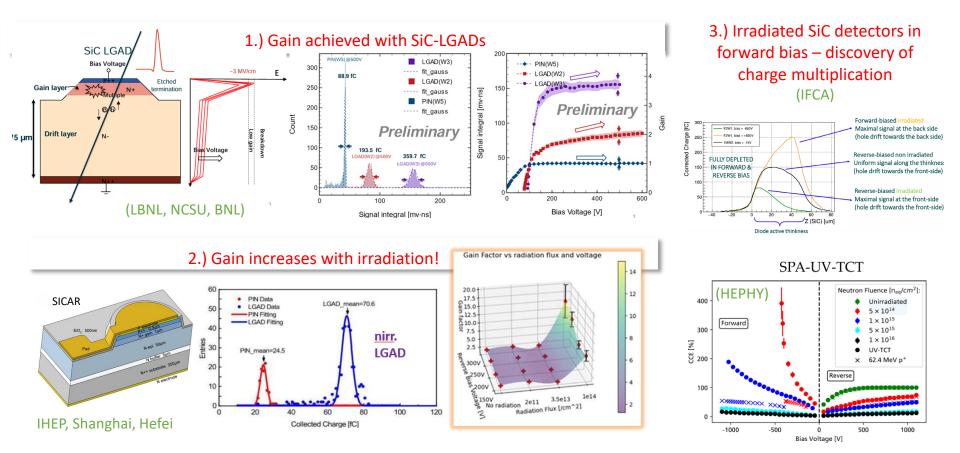
 Wafer area stitched sensors thinned down to few tens μm foldable vertex detector (65 nm TPSCo technology, for ITS-3)

> Large area CMOS strip detectors

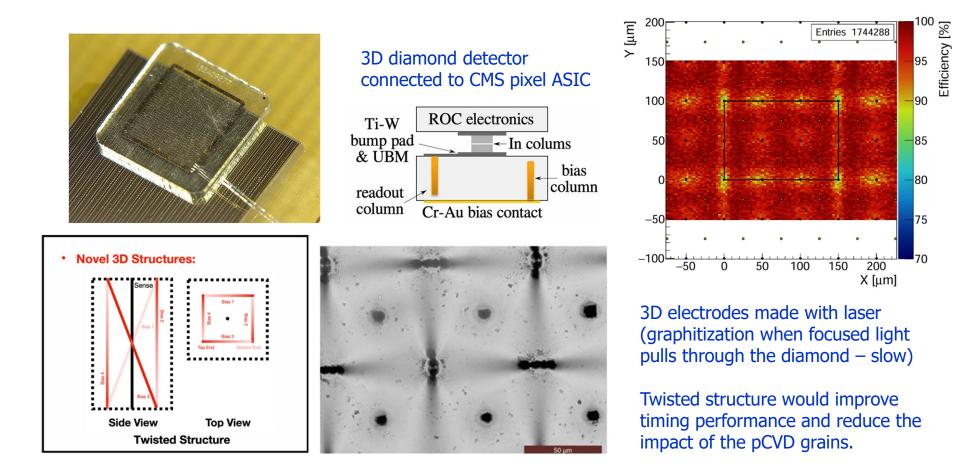

(Reduced material budget, easier integration, potentially low cost and availability)

LFA150 nm - Resistivity of wafer: >2000 Ω cm ASIC can be implemented at the sides

(Dortmund, Freiburg, DESY, Bonn)

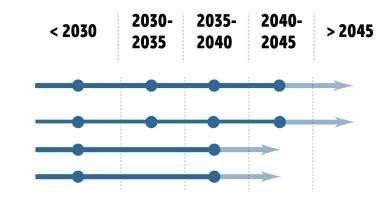

- Fine pitch resolution sensors in TPSco 65 nm technology (ALICE groups)

15 μm pixel pitch, modified design electrode, ITS-3


Silicon carbide developments

DRD

Diamond detector developments **DRD**

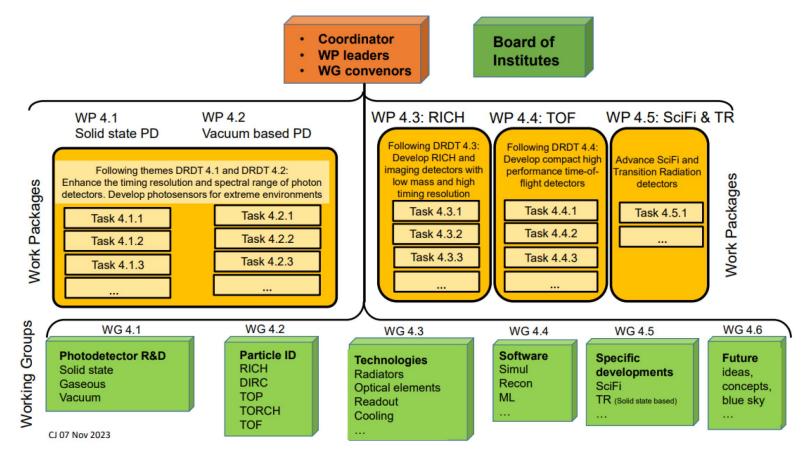


DRD4: photon detectors and PID

Detector R&D Themes (DRDTs)

ID and	DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors
hoton	DRDT 4.2	Develop photosensors for extreme environments
	DRDT 4.3	Develop RICH and imaging detectors with low mass and high resolution timing
		Develop compact high performance time of flight detectors

DRDT 4.4 Develop compact high performance time-of-flight detectors



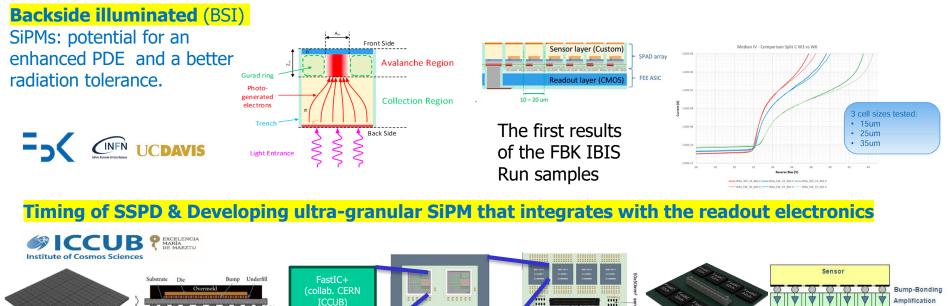
- Single-photon sensitive photodetectors (vacuum, solid state, hybrid)
- PID techniques (Cherenkov-based, Time of Flight)
- Scintillating Fiber (SciFi) tracking
- Transition Radiation (TR) using solid state X-ray detectors

DRD4 : photon detectors and PID

Organization:

- Work packages: projects
- Working groups: discussion forums

DRD4 work packages and tasks


WP1: Solid-State Photodetectors

Task 1 -SSPD with new configurations and modes: Development of back-side illuminated SiPM (potential for better PDE and radiation tolerance); development of ultra-granular SiPM that integrates with the electronics by using 2.5D or 3D interconnection techniques; development of CMOS-SPAD light monolithic sensors for HEP; study of new materials for light detection

Task 2 -Fast radiation hard SiPMs: Standardize procedures for quantification of radiation effects; irradiated SiPMs characterization in wide temperatures range (down to -200 °C); study of annealing; study and quantify other measures enabling the use of SiPM in highly irradiated areas (e.g. smaller SiPMs, macro-and micro-light collectors)

Task 3 -Timing of SSPD, including readout electronics: Study and improve the timing of SiPMs; co-design of a multi-ch. readout ASIC exploiting the timing potential; integration and packaging with integrated cooling; vertical integration of SiPM arrays to FEE (better timing via reduction of interconnections' parasitic inductances and capacitances)

DRD4 -Solid State Photon Detectors wDRD4

#ICCUB

256 Ch 5x5cm2

Module proposal

BGA design &

June 2025

production end of

- Study and **improve the timing of SiPMs**.
- **Optimised, reliable, cost-effective integration** and packaging with integrated cooling.
- Vertical integration of SiPM arrays to FEE: optimise timing by reducing the interconnections' parasitic inductances and capacitances.

Low power

Chip

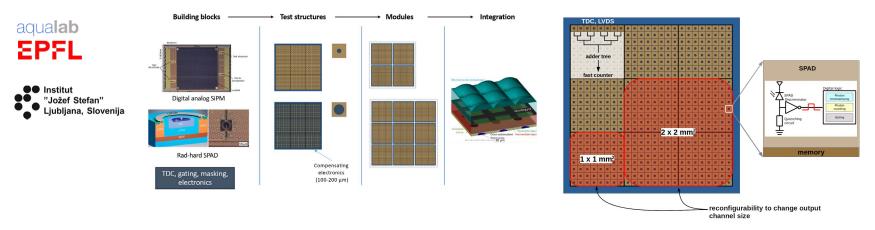
2024 Produced

and evaluated

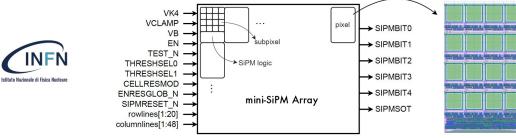
Long term goal 1x1mm2 SiPM array

Ultra granular SiPMs

Discriminator &


Counter Read-Out

3x3mm2 SiPM Array

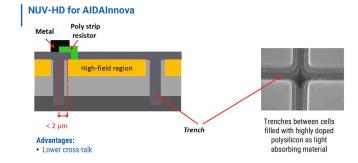

DRD4 -Solid State Photon Detectors

CMOS-SPAD light sensors: co-integration of SPADs and electronics, digitised output signals

spadRICH - Radiation-hard digital analog silicon photomultipliers for future upgrades of Ring Imaging Cherenkov detectors

ASPIDES -Development of a technology platform for the design, production and commissioning of dSiPMs

DRD4 -Solid State Photon Detectors


Fast & radiation hard SiPMs - enabling the use of SiPM in highly irradiated areas

Experimental structures, AidaInnova Run – exp. May 2025

Two different technologies:

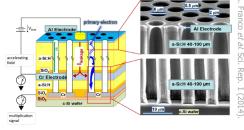
- · Low electric field
- Ultra Low electric field

Cell pitch: 15, 25, 40, 75um; SiPM sizes: (0.25, 0.5,1,2,3)² mm²

DRD4 work packages and tasks

WP2: Vacuum-based Photodetectors

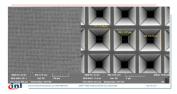
Task 1 -New materials, coatings, longevity and rate capability studies: Develop new materials and techniques to increase MCP-PMT tube lifetime and improve rate capabilities; use new techniques with new materials to achieve high aspect ratio with small diameter for better gain, time, and spatial resolution


Task 2 -New photocathode materials, structure and high QE VPD: Search for new materials with the required characteristics to be used as photocathodes; develop photocathodes with new structures

Task 3 -VPD time and spatial resolution performance: Development of large area MCP-based photodetector with combined excellent timing and position resolution, including electronics integration

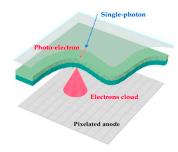
DRD4 – Vacuum-based Photon Detectors

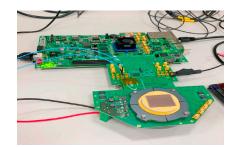
4.2.1: VPD: New material, new coatings, longevity and rate capability study


This concerns the R&D on new materials to produce VPD, new shapes and new coatings and their consequences on their longevity and rate capability

Amorphous Si MCPC(Geneva)

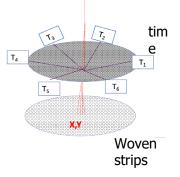
4.2.2: VPD-PMT: New photocathode materials, structure and high quantum efficiency VPD


New photocathode materials, new structures and their impact on improving the quantum efficiency for different wavelengths

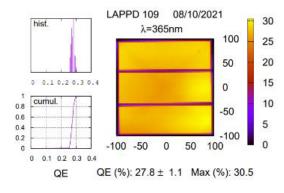


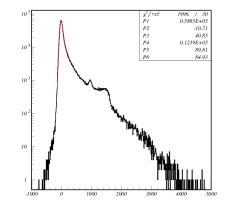
Si nanometric structure for reflective photocathode (Lyon)

4.2.3: VPD time and spatial resolution performance


Study of VPD timing and spatial performance using appropriate readout electronics and appropriate anode structures

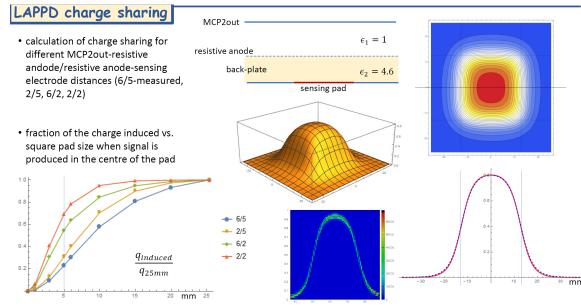
MCP+Timepix4 (Ferrara)




MCP+PICMIC concept (Lyon)

JENAS 2025, RAL

DRD4 – Vacuum-based Photon Detectors



LAPPD (large area picosecond photodetector) Gen II by INCOM

- Fast MCP PMT based detector
- 230mm x 220mm active area
- Nice agreement between modeling and measurements.

April 9, 2025

JENAS 2025, RAL

DRD4 work packages and tasks

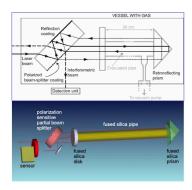
WP3: RICH and other imaging detectors

Task 1 -New Materials Radiators and Components: Gas alternatives; optimized aerogel modules; precise interferometric measurement of refractive index

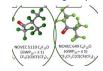
Task 2 -Development of new RICH detector concepts for improved performance: High-pressure gas radiator; fast timing, combined RICH/TOF; cryo-RICH; modular RICH; technological demonstrators & proof of concepts

Task 3 -Prototype Single-Photon Sensitive Module for Imaging Arrays from sensor to DAQ and selfcalibration systems: Fully functional autonomous modules; scalable R/O electronics; integration to arrays with cooling; on-detector calibration/alignment/monitoring

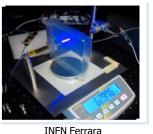
Task 4 -Study of RICH detectors for future e+e- colliders: Prototype a cell for the ARC concept


Task 5 -Software and Performance: Fast simulation; reconstruction for high occupancy, high background

DRD4 – RICH and other imaging detectors for future experiments

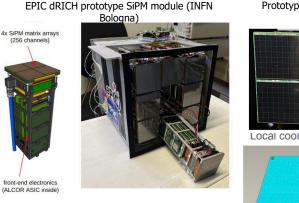


- WP4.3.1: New Materials Radiators and Components Study of novel and optimized radiators, including gas alternatives to perfluorocarbons and enhanced aerogel tiles, along with the development of advanced instrumentation and techniques for the characterization, quality assessment, and monitoring of Cherenkov radiators.
- WP4.3.2: Development of new RICH detector concepts for improved performance.
 - Several new concepts and detector designs under consideration including a pressurized RICH with inert gasses like Argon as a possible alternative to fluorocarbon greenhouse gases.

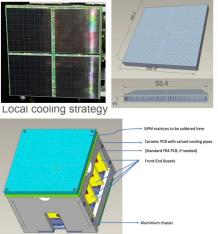

Modified folded Jamin interferometer for gas refractive index monitoring (INFN Trieste)

Study of gas alternatives to perfluorocarbons or eco-friendly fluorocarbon gas system

Optimized Aerogel Radiator Tiles



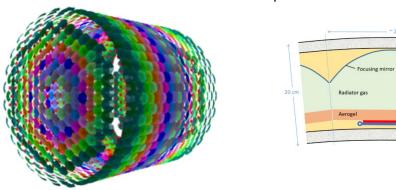
INFN Ferrara



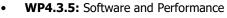
Jozef Stefan Institute

WP4.3.3: Prototype Single-Photon Sensitive Module for Imaging Arrays from sensor to DAO and self-calibration systems.

Prototype SiPM Housing with local cooling (Uni and INFN Genova)

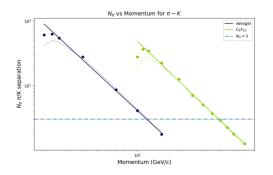


JENAS 2025, RAL


DRD4 – RICH and other imaging detector for future experiments

Composite vessel wall Insulation + support

• **WP4.3.4:** Study of RICH detectors for future electron-positron colliders (CERN, University and INFN Genova, University of Oxford, University of Warwick)



ARC detector concept for FCC-ee

- Review of available frameworks for fast Cherenkov optical photon tracing within the context of Geant4 simulations
- Review of approaches for PID algorithms, including those based on Machine Learning (ML) and Artificial Intelligence (AI)
- Review of external software tools used by the community

 Performance evaluation with simulation and development and testing of a prototype compact RICH cell

JENAS 2025, RAL

DRD4 work packages and tasks

WP4: Time of Flight Detectors

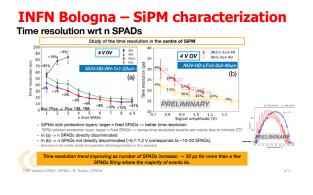
Task 1 -Study the coupling of a thin Cherenkov radiator to a single-photon detector array, for TOF of charged particles: High precision timing (~10 ps) using high refractive index solid Cherenkov radiators coupled to SiPMs arrays or MCPs

Task 2 -Develop a SiPM array for single-photon detection, with mm-scale pixelation, suitable for use in TOF prototypes: Integration of SiPM arrays with multichannel R/O electronics to provide mm-scale position sensitivity and fast timing of Cherenkov light at the very high rates expected with HL-LHC and future colliders

Task 3 -Develop lightweight mechanical supports for DIRC-type TOF: Development of prototype support using lightweight materials with minimal distortion of quartz, detectors, electronics

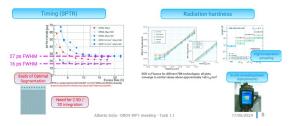
Task 4 -Develop techniques for measuring the optical properties of optical components for TOF detectors: Develop precision measurement characterization of quartz Cherenkov radiators; share existing facilities

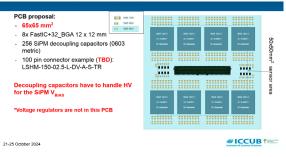
DRD4 – Time of Flight Detectors



- **WP4.4.1:** Study the coupling of a thin Cherenkov radiator to a single-photon detector array, for TOF of charged particles
- **Participants:** INFN Bari, INFN Bologna, FBK, Istanbul, Marseille

INFN Bari – SiPMs with radiators


al Refractive index at 400 nm	Cha Fax.	Por.s1	Max Ø, [degree]	Gas N ^a pa at saturat. (see 1)
al index at	Pas.	Pow.st (MeV/c)	Max Ø, (degree)	sabarat.
1.33	0.75	159	41.3	13
1.40	0.71	142	44.3	34
1.47	0.68	129	47.9	36
esin 1.50	0.66	124	45.2	15
sin 1.55	0.64	117	49.8	17
wing 1.84	0.54	90	57.1	21
	1.47 realin 1.50 realin 1.55 realing 1.84 uuming PDE of S	1.47 0.68 reain 1.50 0.66 ssin 1.55 0.64 reaing 1.84 0.54 uming PDE of \$13360-	1.47 0.68 129 reain 1.50 0.66 124 min 1.55 0.64 117 reing 1.84 0.54 90 uuming PDE of \$13360-3050C\$ \$ \$ \$	1.47 0.68 129 47.9 mean 1.50 0.66 124 46.2 min 1.55 0.64 117 49.8


- **WP4.4.2:** Develop a SiPM array for single-photon detection, with mm-scale pixelation, suitable for use in TOF prototype
- **Participants:** Aachen, Barcelona, INFN Bari, FBK, Leicester, Marseille

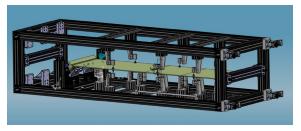
FBK – SiPM developments for ToF – overlap with WP4.1

Custom technology developments: examples Several customized SIPM developments are needed for specific big science applications.

ICCUB, Barcelona – FastIC chip - overlap with WP4.1

JENAS 2025, RAL

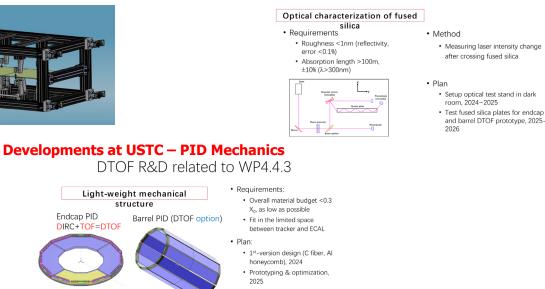
DRD4 – Time of Flight Detectors


WP4.4.3: Develop lightweight mechanical supports for ٠ **DIRC-type TOF detectors**

Endcap PID

DIRC+TOF=DTOF

Participants: GSI, USTC, Oxford •


Oxford – lightweight mechanical structures for **TORCH** radiators

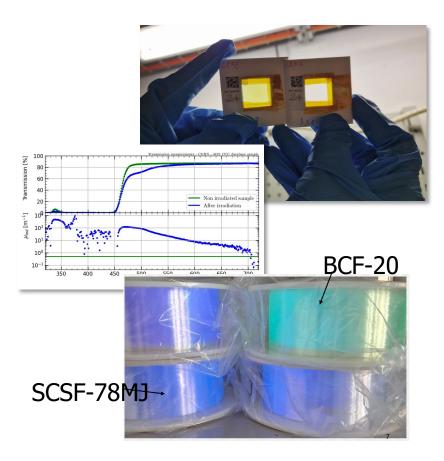
- WP4.4.4: Develop techniques for measuring the optical • properties of optical components for TOF detectors
- Participants: GSI, USTC, Istanbul, Oxford, Yerevan •

Developments at USTC – Optical characterizations

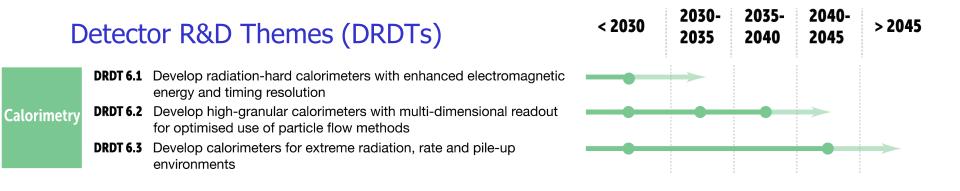
DTOF R&D related to WP4.4.4

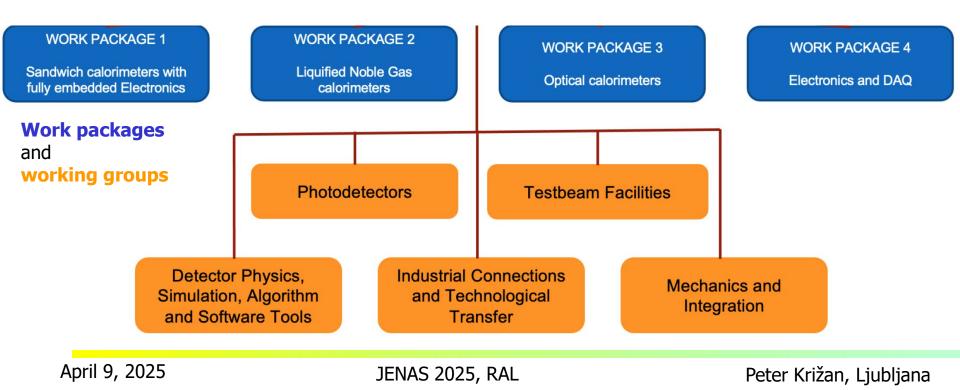
Final design, 2026

JENAS 2025, RAL

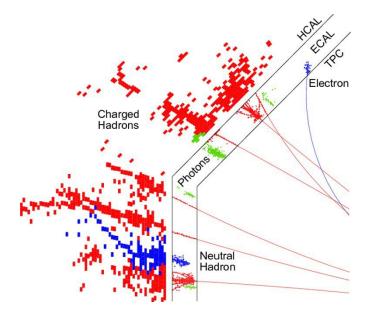

Plan to join LHCb-TORCH group (associate membership) → Contribute to detector/electronics/mechanical etc.

DRD4 WP5

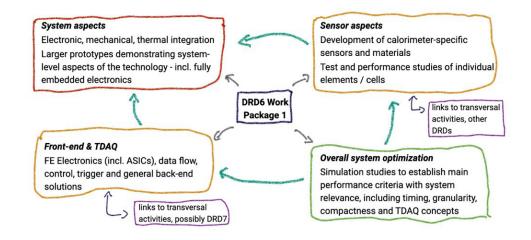

WP5.1 Investigating new Scintillating Fibre development for HEP Applications


Recent Developments:

- 1. Irradiation of new green commercial sample with good timing (in partnership with ECAL DRD6 WP3) shows poor hardness (transmission loss) even at 10 kGy
- 2. Samples of 3 improved attenuation length Luxium (formerly Saint Gobain) fibres delivered to EPFL.
 - Will be wound as fibre mats and irradiated at IRRAD to LHCb Upgrade 2 doses in April (10 kGy peak)
- 3. Discussions with Organic Scintillator developers at Scintillator Brainstorming Meeting organized by E. Auffray https://indico.cern.ch/event/1507749/
 - Very useful, made new contacts!



DRD6



Work Package 1: sandwich calorimeters with embedded electronics

- Imaging calorimeters live on the high separation power for Particle Flow One
- calorimeter Subdivided into electromagnetic and hadronic sections

- Challenges:
 - High pixelisation, 4π hermetic -> little room for services
 - . Detector integration plays a crucial role

New strategic R&D issues

Detector module integration Timing High rate e+e- collider (such as FCC-ee)

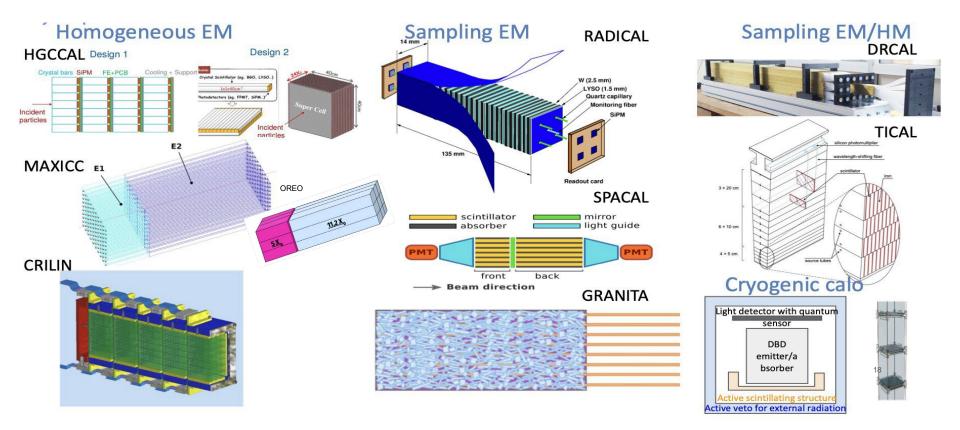

R. Pöschl, DRDC Nov 2024

April 9, 2025

JENAS 2025, RAL

Work Package 2: liquefied noble gas calorimeters

- Focused on R&D on noble-liquid calorimetry
- Main target in the foreseeable future: sampling EM calorimeter for e⁺e⁻ factories one of the key features of the "ALLEGRO" detector concept for FCC-ee (<u>https://allegro.web.cern.ch/</u>)
 - •highly granular calorimeter with absorber planes inclined in r-phi (barrel) / arranged in turbine-like structure (endcap)
 - •readout by segmented PCB planes alternated to Pb (or W) absorbers, gaps in between filled with LAr (or LKr)



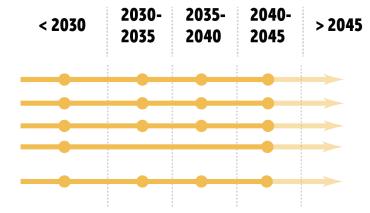
R. Pöschl, DRDC Nov 2024

Work Package 3: optical calorimeters

Involvement from ~70 institutes working on 11 different projects

The goal: explore, optimize, and demonstrate with full shower-containment prototypes, new concepts of sampling and homogeneous calorimeters based on scintillating materials

R. Pöschl, DRDC Nov 2024


April 9, 2025

JENAS 2025, RAL

DRD7: electronics

Detector R&D Themes (DRDTs)

	DRDT 7.1	Advance technologies to deal with greatly increased data density			
CS	DRDT 7.2	Develop technologies for increased intelligence on the detector			
	DRDT 7.3	Develop technologies in support of 4D- and 5D-techniques			
	DRDT 7.4	Develop novel technologies to cope with extreme environments and required longevity			
	DRDT 7.5	Evaluate and adapt to emerging electronics and data processing technologies			

DRD7 Projects

- 7.1 Data density and power efficiency
- 7.2 Intelligence on detector

• 7.3 4D and 5D techniques

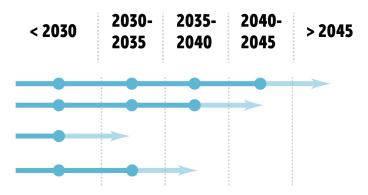
• 7.4 Extreme environnements

- 7.1a Silicon photonics transceivers
- 7.1b Powering next generation detector systems
- 7.1c Wireless allowing data and power transmission
- 7.2b Radiation Tolerant RISC-V SoC
- 7.2c Virtual Electronic System Prototyping
- 7.3a High Performance ADCs and TDCs
- 7.3b Characterizing and calibrating sources impacting time measurements
- 7.3c Timing distribution techniques
- 7.4a: Modelling and development of cryogenics PDKs and IPs
- 7.4b Radiation resistance of advanced CMOS nodes
- 7.4c Cooling and cooling plates
- 7.5 Back-end systems and COTS
- 7.5a: DAQOverflow

•

٠

- 7.5b: From front-end to back-end with 100 GbE
- 7.6 Complex imaging ASICs and technologies
- 7.6a: Common access to selected imaging technologies
- 7.6b: Shared access to 3D integration


April 9, 2025

JENAS 2025, RAL

DRD5

Detector R&D Themes (DRDTs)

	DRDT 5.1	Promote the development of advanced quantum sensing technologies			
m	DRDT 5.2	Investigate and adapt state-of-the-art developments in quantum			
		technologies to particle physics			
	DRDT 5.3	Establish the necessary frameworks and mechanisms to allow			
		exploration of emerging technologies			
	DRDT 5.4	Develop and provide advanced enabling capabilities and infrastructure			

Quantu

<u>Exotic systems</u> in traps & beams (HCI's, molecules, Rydberg systems, clocks, interferometery, ...)

Quantum materials (0-, I-, 2-D) (Engineering at the atomic scale)

Quantum superconducting systems (4K electronics; MMC's, TES, SNSPD, KID's/...; integration challenges)

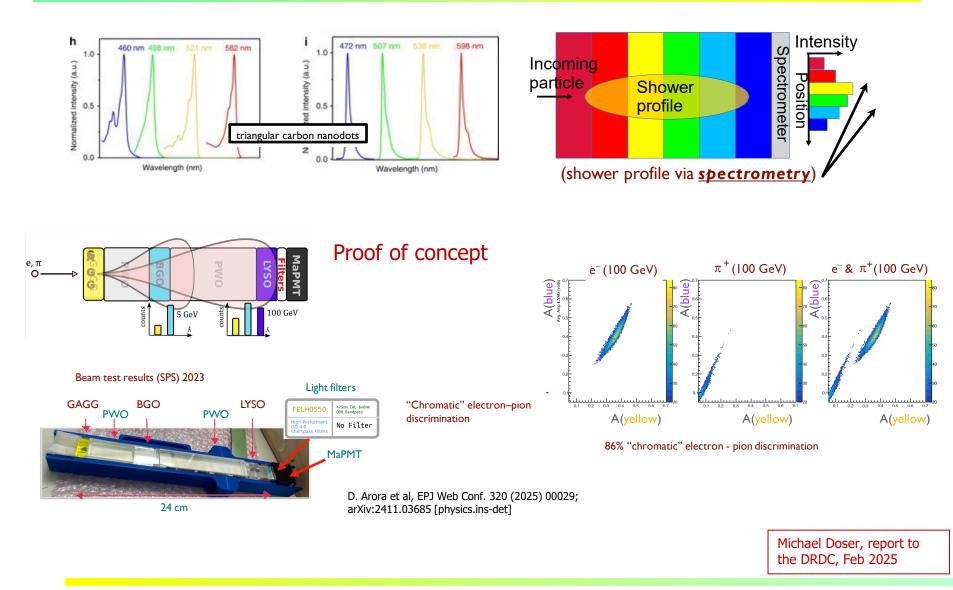
<u>Scaling up</u> to macroscopic ensembles (spins; nano-structured materials; hybrid devices, opto-mechanical sensors,...)

<u>Quantum techniques for sensing</u> (back action evasion, squeezing, entanglement, Heisenberg limit)

<u>Capability expansion</u> (cross-disciplinary exchanges; infrastructures; education)

Michael Doser, report to the DRDC, Feb 2025

Potential HEP impact


Applied (detectors) Fundamental physics

Improved quantum measurements

HEP function Work package	n Tracking	Calorimetry	Timing	PID	Helicity
WP 1 (Quantum systems in traps and beam)	Rydberg TPC	BEC WIMP scattering (recoil)	O(fs) reference clock for time-sensitive synchronization (photon TOF)	Rydberg dE/dx amplifiers	
WP2 (Quantum materials: 0-, 1- and 2-D)	"DotPix"; improved GEM's; chromatic tracking (sub-pixel); active scintillators	Chromatic calorimetry	Suspended / embedded quantum dot scintillators	Photonic dE/dx through suspended quantum dots in TPC	
WP 3 (Superconducting quantum devices)	O(ps) SNSPD trackers for diffractive scattering (Roman pot)	FIR, UV & x-ray calorimetry	O(ps) high Tc SNSPD	Milli- & microcharged particle trackers in beam dumps	
WP 4 (scaled-up bulk systems for mip's)	Multi-mode trackers (electrons, photons)	Multi-mode calorimeters (electrons, photons, phonons)	Wavefront detection (e.g. O(ps) embedded devices)		Helicity detector via ultra-thin NV optically polarized scattering / tracking stack
WP 5 (Quantum techniques)				Many-to-one entanglement detection of interaction	
WP 6 (capacity building)	thus enhance	d attractiveness; cross	rce (detector constructi -departmental networki dilution refrigerators, pr	ng and collaboration; b	roadened user

(under way; in preparation; under discussion or imaginable applications; long-range potential)

Specific example for a potential particle physics impact: WP-2 chromatic calorimetry

April 9, 2025

JENAS 2025, RAL

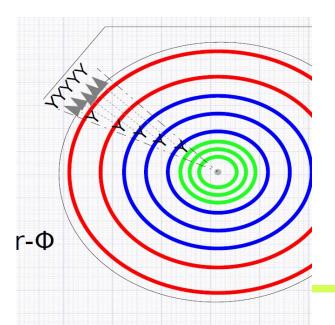
Blue-sky research

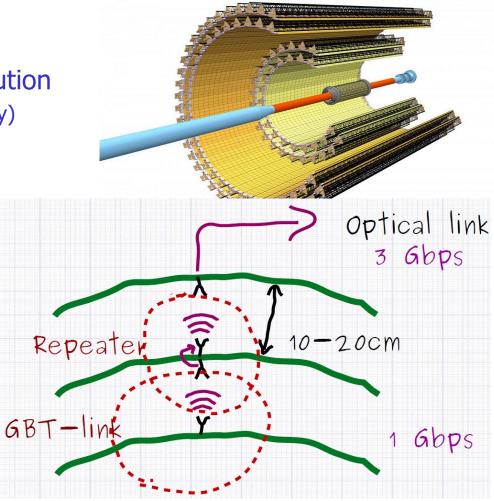
Innovative instrumentation research is one of the defining characteristics of the field of particle physics.

Blue-sky (more explorative, without addressing immediate detector specifications) R&D has often resulted in game-changing developments which could not have been anticipated even a decade in advance.

Examples include micro-pattern gas detectors, SiPMs and new technologies for very fast (10 ps) timing coupled with accurate spatial information - 4D-detectors.

Blue-sky developments have often been of broad application and had immense societal benefit (World Wide Web, Magnetic Resonance Imaging, Positron Emission Tomography and X-ray imaging for photon science).

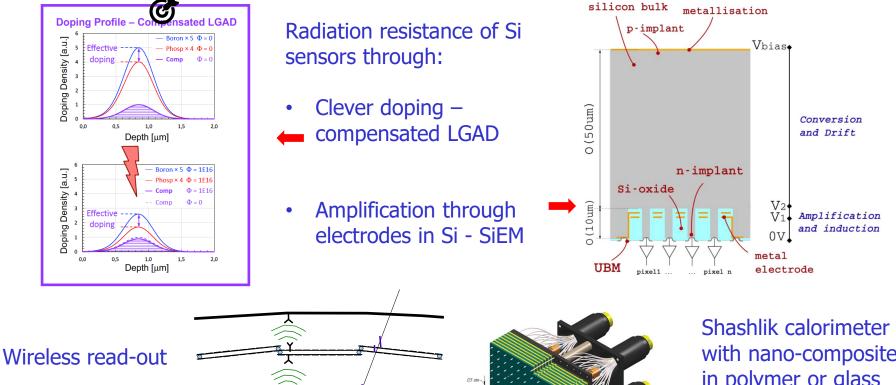

From 'The 2021 ECFA Detector Research and Development Roadmap'

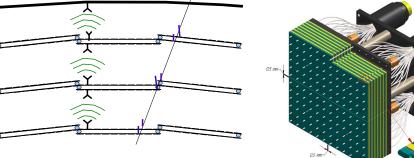

April 9, 2025

Blue-sky research, example: Wireless data acquisition

Physics events propagate from the collision point radially outwards – while the detectors are read our axially
Not optimal for triggering
Not optimal for material distribution (in particular at the barrel-endcap boundary)

Idea: read out wirelessly





Richard Brenner @ ECFA Detector R&D TF7 Symposium

AIDAinnova Blue Sky projects

AIDAinnova is a large EU-funded detector R+D project hosted by CERN. Most of the effort is targeted research, but one of the work packages is devoted to blue-sky research.

Shashlik calorimeter with nano-composites in polymer or glass matrix; decay times O(100 ps), radiation hard to O(1 MGy)

April 9, 2025

JENAS 2025, RAL

Summary

Detectors for particle physics experiments are our discovery tools – well-designed and well-functioning devices have been essential for our present understanding of elementary particles and their interactions.

A very vibrant research area: a large variety of new methods and techniques has either been developed recently or is under commissioning or early data taking.

New challenges are waiting for us when planning the next generation of experiments as documented in the ECFA Detector R&D Roadmap. The DRD collaborations are helping the community to get organized in a structured way.

Blue sky research has traditionally been an important driver of progress in particle physics – and has to be supported also in the future. Many blue sky studies of today will become mainstream tomorrow.

Novel ideas will also come from discoveries in condensed matter physics, advanced materials, needs in medical imaging, and innovations in the industry.