

13TH VIENNA CONFERENCE ON INSTRUMENTATION

Study of a Cherenkov based TOF-PET module

Samo Korpar, Rok Dolenec, <u>Peter Križan</u>, Rok Pestotnik, Aleš Stanovnik J. Stefan Institute, Ljubljana, University of Ljubljana and University of Maribor

VCI2013, February 11-15, 2013

Detection of annihilation gammas in a Cherenkov radiator Cherenkov radiator for TOF-PET MCP-PMT Experimental setup Back-to-back timing resolution Reconstruction, data and MC Conclusions and summary

TOF-PET with Cherenkov light

Time-of-Flight difference of annihilation gammas is used to improve the contrast of images obtained with PET:

- localization of source position on the line of response
- reduction of coincidence background
- improvement of S/N

Novel photon detectors – MCP-PMT and SiPM – have excellent timing resolution \rightarrow TOF resolution limited by the scintillation process

Peter Križan, Ljubljana

Intrinsic suppression of scattered events

Annihilation gammas scatter in patient or detector \rightarrow unwanted background when scattered gamma is detected in coincidence

- Traditional PET
 - number of scintillation photons proportional to energy deposited
 - measurement of gamma energy → rejection of scattered (lower energy) events
- Cherenkov PET
 - at most a few photons detected \rightarrow no energy information available
 - but: detection efficiency drops with gamma energy \rightarrow intrinsic suppression

- also: very high Z material, less Compton scattering in the radiator

Cherenkov radiator for gamma detection

Requirements for the Cherenkov radiator for annihilation gammas:

- High gamma stopping power
- High fraction of gamma interactions via photoeffect \rightarrow electrons with maximal kinetic energy \rightarrow more Cherenkov photons
- High enough refractive index (needs to be optimized)
- High transmission for visible and near UV Cherenkov photons
- Studied: PbF₂ and PbWO₄

	ρ (g/cm³)	n	Cherenkov threshold (v/c _o)	e ⁻ Cherenkov threshold (keV)	Cutoff wavelength (nm)	Radiation length (cm)
PbF ₂	7.77	1.82	0.55	101	250	0.93
PWO	8.28	2.2	0.45	63	350	0.89

N.B. PbWO₄ is also a scintillator.

Photon detector: MCP-PMT

Hamamatsu SL10 MCP-PMT

(prototypes for Belle II TOP counter \rightarrow talk by K. Matsuoka):

- · multi-anode PMT with two MCP steps, 10 mm pores
- . 16 (4x4) anode pads, pitch ~ 5.6 mm, gap ~ 0.3 mm
- \cdot box dimensions ~ 27.5 mm square
- \cdot excellent timing ~ 20ps for single photons
- · multi-alkali photocathode
- 1.5 mm borosilicate window
- . gain > 10⁶

photon
photoelectron
Dual MCP
Anode

Experimental setup

Two detectors in a back-to-back configuration with 25x25x15 mm³ crystals coupled to MCP-PMT with optical grease.

Cherenkov radiators: -monolithic: 25 x 25 x 5,15 mm³ (PbF₂, PbWO₄) -4x4 segmented: 22.5x22.5x7.5 mm³ (PbF₂) -black painted, Teflon wrapped, bare

Experimental setup: read-out

Readout:

- amplifier: ORTEC FTA820
- discriminator: Philips sc. 708LE
- TDC: Kaizu works KC3781A
- QDC: CAEN V965

- Time-walk correction applied in the analysis step

Simulation: GEANT4

Interactions in a single crystal and in a full back-to-back setup were simulated in GEANT4, taking into account:

- gamma interactions with detector
- optical photons (Cherenkov and scintillation) produced between 250 nm - 800 nm (no scintillation assumed for PbF2)
- optical photon boundary processes (exit surface polished, other surfaces polished and wrapped in white reflector or black painted)
- photo-detector window coupled with optical grease (n=1.5)
- photo-detector QE (peak 24% @ 400nm)
- photo-detector intrinsic timing modeled according to the measured response function

Cherenkov photon production and detection

Simulation results for PbF₂ and PbWO₄ radiators

- 25x25x15 mm³ crystal, black painted
- coupled to photo-detector with realistic PDE

	PbF ₂	PbWO ₄
Gammas interacting	79.7%	80.1%
Electrons produced	1.53	1.57
Ch. photons produced *	15.1	22.2
Ch.photons reaching photodetector	2.11	1.27
Detected Ch. photons	0.14	0.07
Detected scint. photons	_	0.47

* in the 200 - 800 nm wavelength range

More Cherenkov photons produced in PbWO₄

More are detected in PbF_2 due to a better optical transmission (lower λ_{cutoff})

Experimental results: Back-to-back time resolution

Best timing resolution: black painted PbF_2 crystals (Cherenkov light hitting the walls is absorbed - delayed Cherenkov photons suppressed \rightarrow improved timing, reduced efficiency)

Data taken with :

15 mm long crystal:
→ FWHM ~ 95 ps

- 5 mm long crystal:
- \rightarrow FWHM ~ 70 ps
- → NIM A654(2011)532-538

511 keV

Point source position

Data taken at three different point source positions spaced by 20 mm:

- average time shift 125 ps
- timing resolution ~ 40 ps rms, ~ 95 ps FWHM
- position resolution ~ 6 mm rms, ~ 14 mm FWHM

Black painted 15 mm PbF₂ crystals.

→ NIM A654(2011)532-538

Time resolution, PbF₂

TOF resolution for different radiator surfaces (15 mm thick PbF₂): black painted: **121 ps** FWHM, bare: **193 ps** FWHM, Teflon wrapped: **284 ps** FWHM

Indirect photons (bare and Teflon wrapped crystals): adds a very wide component, FWHM increases faster than sigma of the peak

- \rightarrow FWHM probably not the right quantity to compare
- \rightarrow has to be checked on reconstructed images

February 14, 2013

N.B. Somewhat worse timing performance than in the original set-up; now we have more channels, and not a perfect calibration.

Time resolution, PbWO₄

TOF resolution for PbWO₄ (black painted):

- time distributions dominated by scintillation background, with a small Cherenkov peak
- 5 mm thick: **1.2 ns** FWHM, 15 mm thick: **1.7 ns** FWHM

+ smaller number of Cherenkov photons \rightarrow PbWO₄ does not look like a competitive Cherenkov detector for annihilation gammas

Detection efficiency

Triggered photons: on one side of the ²²Na source use a scintillation detector with energy measurement

Detection efficiency =

<u># events detected on Cherenkov detector with a 511 keV trigger</u>

events with 511 keV trigger

Corrected for events due to Compton scattering of 1275 kev gammas from ²²Na source

→ Results: from 4.3% (5 mm thick, black painted PbF_2) up to 18% (15 mm thick, Teflon wrapped PbF_2)

Simulation: search for optimum radiator parameters

Efficiency improvements, MC estimates

- Photodetector:
 - improved photon detection efficiency
 - photocathode with better QE
 - window, transparent to lower λ (quartz \rightarrow 160 nm)
 - example: Hamamatsu 500S photocathode
 - \rightarrow **1.4x** detection efficiency (2x in FOM= ϵ^2/σ)
- Transport of photons from radiator to photo-detector:
 - optimal optical coupling of the radiator to the photon detector (at present radiator refractive index n=1.8, optical grease n=1.5, PMT window n=1.5) $\rightarrow \sim 1.4x$ efficiency (2x FOM)
- **Radiator optimization** with a hypothetical, PbF₂-like crystal (using 500S photocathode):
 - With an optimized refractive index, thickness (n=2.0, d~14mm) \rightarrow **1.5x** efficiency (3x FOM)
 - Improved optical transmission ($\lambda_{cutoff} = 160 \text{ nm}$) $\rightarrow 2.4x$ efficiency (6x FOM)
 - \rightarrow poster by S. Kurosawa et al, on Gd₃Ga₅O₁₂

Reconstruction

Cherenkov PET tested experimentally

- data equivalent to one PET ring obtained with only two detectors
- source rotated in discrete steps
- data collected at each step for the same amount of time
- D = 185 mm, H = 22.5 mm

Full body PET scanner simulated

- D = 800 mm, 15 rings (H = 340 mm)
- phantom with d = 270 mm, 4 hot spheres (d: 10 22 mm) and 2 cold spheres (d = 28, 37mm)

Reconstruction

Reconstruction algorithms:

- Filtered backprojection (FBP): basic non-TOF algorithm
- TOF weighted FBP: pixels along LOR incremented with TOF response defined weight
- Most likely position (MLP): point of decay on LOR calculated from TOF information
- Filtered MLP: MLP image deconvoluted for TOF response

Reconstruction - experiment

- ²²Na point sources at +10 mm and -10 mm
- 4x4 segmented, black painted PbF₂ radiators

→ Simple, very fast Most-likely-point (MLP) method (~histograming of points) already gives a reasonable picture

Reconstruction - simulation

- Hot spheres activity concentration: 3x phantom background
- Statistics equivalent to 163 s of PET examination
- 4x4 segmented, Teflon wrapped PbF₂ radiators
- 20 mm thick axial slices

First tries, have to understand how the possible improvements in the detection efficiency will influence the performance. ⋅Black painted (better TOF resolution) → better contrast, ⋅Teflon wrapped (higher statistics) → better contrast-to-noise ratio