

Physics at SuperKEKB

Peter Križan

University of Ljubljana and J. Stefan Institute

Seminar, Tokyo Metropolitan University Tokyo, November 10, 2010

University of Ljubljana

"Jožef Stefan" Institute

Contents

- Highlights from Belle
- Physics case for a Super B factory
- Accellerator upgrade → SuperKEKB
- Detector upgrade → Belle-II
- Summary

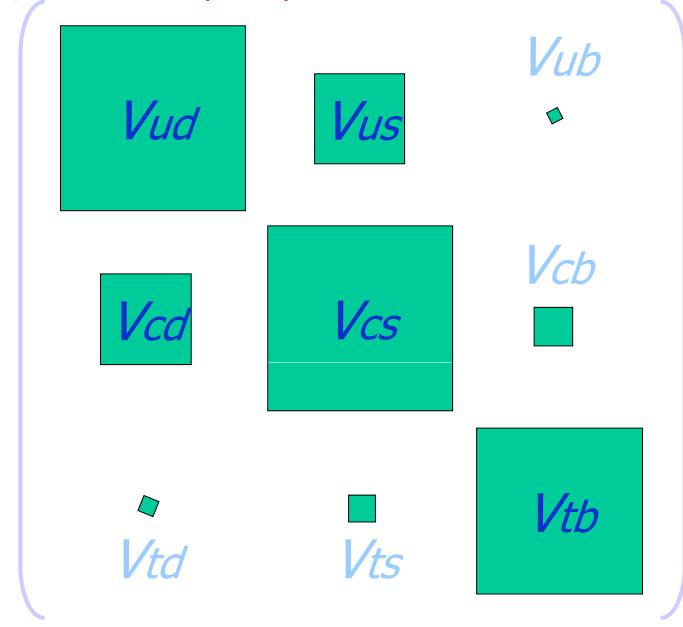
B factory physics program


B factory main task: measure CP violation in the system of B mesons

specifically: various measurements of complex elements of Cabbibo-Kobayashi-Maskawa matrix

CKM matrix is unitary

deviations could signal processes not included in SM

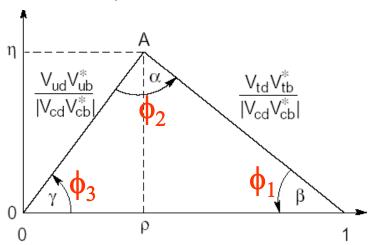

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Transitions between members of the same family more probable (=thicker lines) than others

CKM: almost a diagonal matrix, but not completely

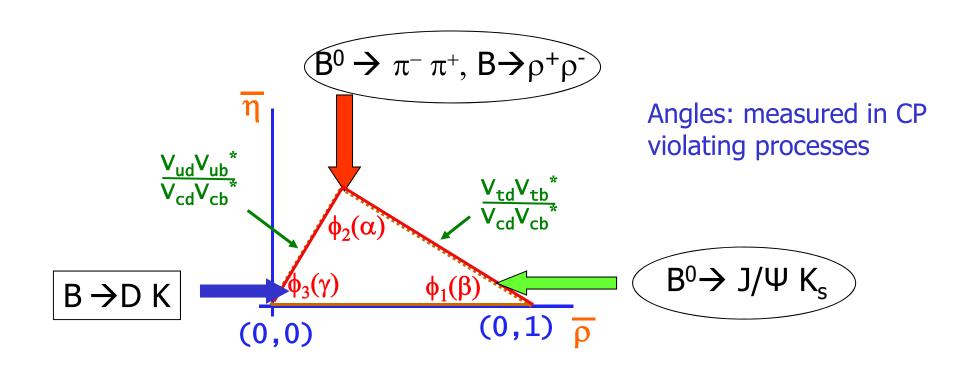
CKM: almost real, but not completely!

CKM matrix


Wolfenstein parametrisation: expand in the parameter λ (=sin θ_c =0.22)

A, ρ and η : all of order one

$$V = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$


Unitarity condition:

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

Three Angles: (ϕ_1, ϕ_2, ϕ_3) or (β, α, γ)

Big Questions: Are determinations of <u>angles</u> consistent with determinations of the <u>sides</u> of the triangle? Are angle determinations from loop and tree decays consistent?

Time evolution in the B system

An arbitrary linear combination of the neutral B-meson flavor eigenstates

$$a|B^{0}\rangle + b|\overline{B}^{0}\rangle$$

is governed by a time-dependent Schroedinger equation

$$i\frac{d}{dt}\binom{a}{b} = H\binom{a}{b} = (M - \frac{i}{2}\Gamma)\binom{a}{b}$$

M and Γ are 2x2 Hermitian matrices. CPT invariance $\rightarrow H_{11} = H_{22}$

$$M = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix}, \Gamma = \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$$
 diagonalize \rightarrow

Time evolution in the B system

The light B_L and heavy B_H mass eigenstates with eigenvalues m_H , Γ_H , m_L , Γ_L are given by

$$|B_{L}\rangle = p|B^{0}\rangle + q|\overline{B}^{0}\rangle$$
$$|B_{H}\rangle = p|B^{0}\rangle - q|\overline{B}^{0}\rangle$$

The eigenvalue differences

$$\Delta m_B = m_H - m_L, \Delta \Gamma_B = \Gamma_H - \Gamma_L$$

They are determined from the M and Γ matrix elements

$$(\Delta m_B)^2 - \frac{1}{4} (\Delta \Gamma_B)^2 = 4(|M_{12}|^2 - \frac{1}{4} |\Gamma_{12}|^2)$$

$$\Delta m_B \Delta \Gamma_B = 4 \operatorname{Re}(M_{12} \Gamma_{12}^*)$$

Time evolution of B's

Time evolution:

$$\begin{vmatrix} B_{phys}^{0}(t) \rangle = g_{+}(t) |B^{0}\rangle + (q/p)g_{-}(t) |\overline{B}^{0}\rangle$$

$$\begin{vmatrix} \overline{B}_{phys}^{0}(t) \rangle = (p/q)g_{-}(t) |B^{0}\rangle + g_{+}(t) |\overline{B}^{0}\rangle$$
with
$$g_{+}(t) = e^{-iMt}e^{-\Gamma t/2}\cos(\Delta mt/2)$$

$$g_{-}(t) = e^{-iMt}e^{-\Gamma t/2}i\sin(\Delta mt/2)$$

$$M = (M_{H} + M_{L})/2$$

Decay probability

Decay probability

$$P(B^0 \to f, t) \propto \left| \left\langle f \left| H \middle| B_{phys}^0(t) \right\rangle \right|^2$$

Decay amplitudes of B and anti-B to the same final state **f**

$$A_{f} = \langle f | H | B^{0} \rangle$$

$$\overline{A}_{f} = \langle f | H | \overline{B}^{0} \rangle$$

Decay amplitude as a function of time:

$$\left\langle f \left| H \right| B_{phys}^{0}(t) \right\rangle = g_{+}(t) \left\langle f \left| H \right| B^{0} \right\rangle + (q/p) g_{-}(t) \left\langle f \left| H \right| \overline{B}^{0} \right\rangle$$

$$= g_{+}(t) A_{f} + (q/p) g_{-}(t) \overline{A}_{f}$$

... and similarly for the anti-B

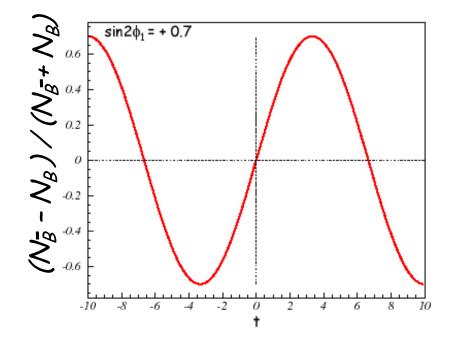
CP violation: decay rate asymmetry vs. time

$$a_{f_{CP}} = \frac{P(\overline{B}^{\,0} \to f_{CP}, t) - P(B^{\,0} \to f_{CP}, t)}{P(\overline{B}^{\,0} \to f_{CP}, t) + P(B^{\,0} \to f_{CP}, t)} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} - \left| g_{+}(t)A_{f_{CP}} + (q/p)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} + \left| g_{+}(t)A_{f_{CP}} + (q/p)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} + \left| g_{+}(t)A_{f_{CP}} + (q/p)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} + \left| g_{+}(t)A_{f_{CP}} + (q/p)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} + \left| g_{+}(t)A_{f_{CP}} + (q/p)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} + \left| g_{+}(t)A_{f_{CP}} + (q/p)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} + \left| g_{+}(t)A_{f_{CP}} + (q/p)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} + \left| g_{+}(t)A_{f_{CP}} + (q/p)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2} + \left| (p/q)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} + g_{+}(t)\overline{A}_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)\overline{A}_{f_{CP}} \right|^{2}} = \frac{\left| (p/q)g_{-}(t)A_{f_{CP}} \right|^{2}}{\left| (p/q)g_{-}(t)A_{f_{CP}} \right|^{2}}} = \frac{\left| (p/q)g_{-}($$

$$= \frac{(1-|\lambda_{f_{CP}}|^2)\cos(\Delta mt) - 2\operatorname{Im}(\lambda_{f_{CP}})\sin(\Delta mt)}{1+|\lambda_{f_{CP}}|^2}$$

$$= C\cos(\Delta mt) + S\sin(\Delta mt)$$

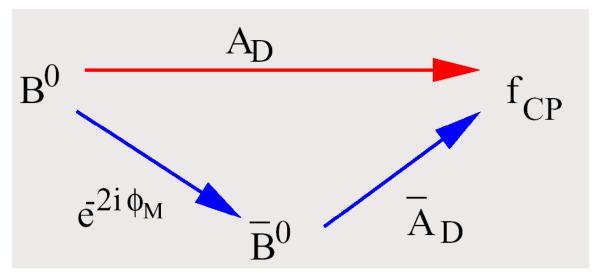
$$\lambda = \frac{q}{p} \frac{\overline{A_f}}{A_f}$$


Non-zero effect if $Im(\lambda) \neq 0$, even if $|\lambda| = 1$

If
$$|\lambda| = 1 \rightarrow a_{f_{CP}} = -\operatorname{Im}(\lambda)\sin(\Delta mt)$$

CP Violation in B decays to CP eigenstates f_{CP}

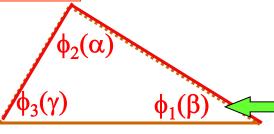
$$A_{CP}(t) = \frac{\Gamma(\overline{B}^{0}(t) \to f_{CP}) - \Gamma(B^{0}(t) \to f_{CP})}{\Gamma(\overline{B}^{0}(t) \to f_{CP}) + \Gamma(B^{0}(t) \to f_{CP})} = -\xi_{f} \sin 2\phi_{f} \sin \Delta m_{B}t$$


$$\xi_f = \pm 1$$
 for $CP = \pm 1$

CP violation in the interference between decays with and without mixing

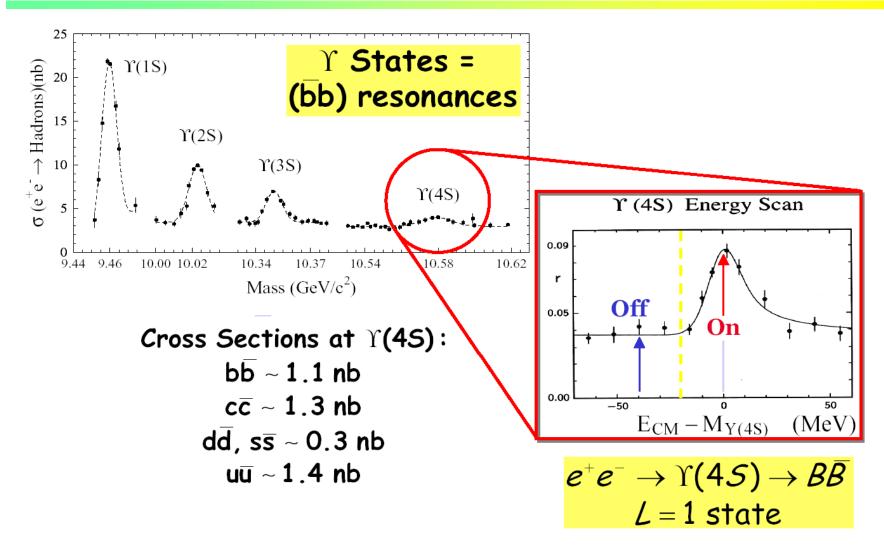
CP violation in the interference between mixing and decay to a state accessible in both B⁰ and anti-B⁰ decays

For example: a CP eigenstate f_{CP} like $\pi^+ \pi^-$ or $J/\psi K_S$

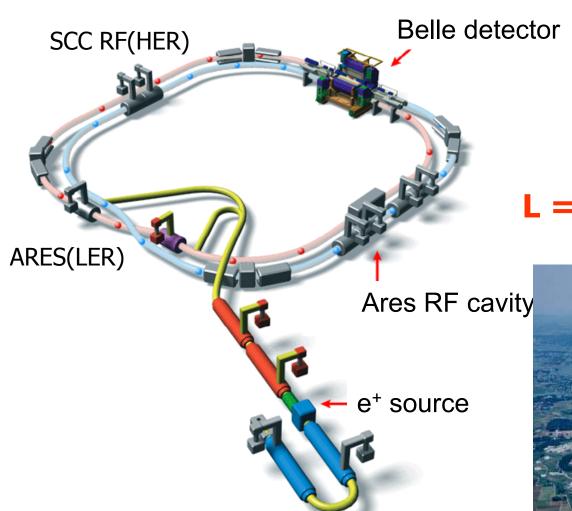


Decay rate asymmetry

$$a_{f_{CP}} = -\operatorname{Im}(\lambda)\sin(\Delta mt)$$


If $|\lambda| = 1$

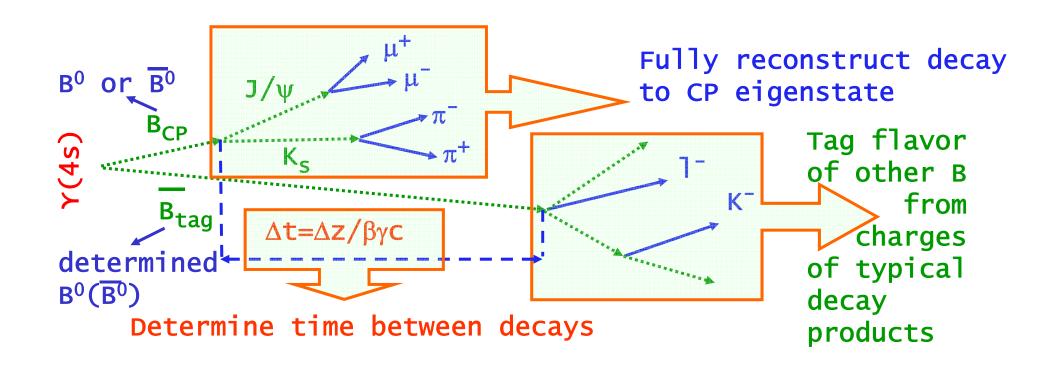
For
$$J/\psi K_S \longrightarrow Im(\lambda) = \sin 2\phi$$


B meson production at Y(4s)

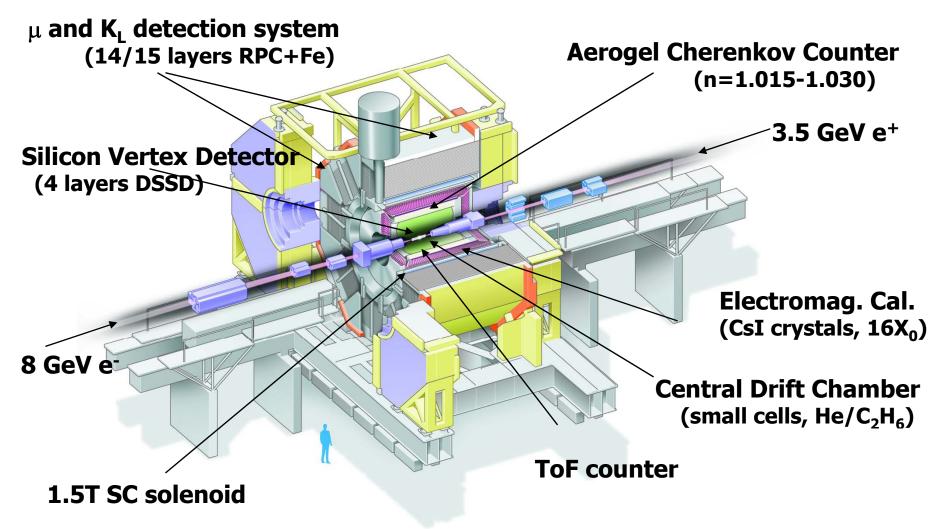
Big advantage: low background

The KEKB Collider

8 x 3.5 GeV 22mrad crossing angle


World record:

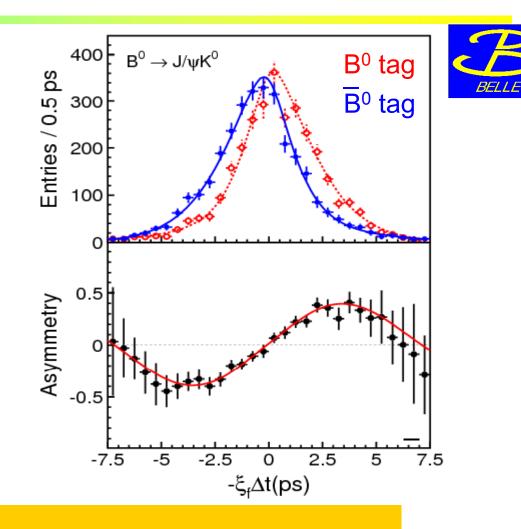
 $L = 2.1 \times 10^{34} / \text{cm}^2 / \text{sec}$


Principle of measurement

$$A_{CP}(t) = \frac{\Gamma(\overline{B}^{0}(t) \to f_{CP}) - \Gamma(B^{0}(t) \to f_{CP})}{\Gamma(\overline{B}^{0}(t) \to f_{CP}) + \Gamma(B^{0}(t) \to f_{CP})} = -\xi_{f} \sin 2\phi_{I} \sin \Delta m_{B}t$$

Belle spectrometer at KEK-B

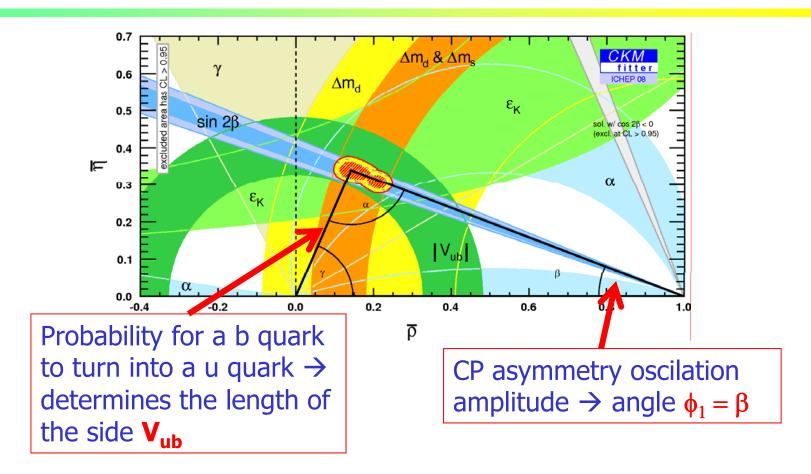
+ an extremely well operating KEK-B collider →



CP violation in the B system

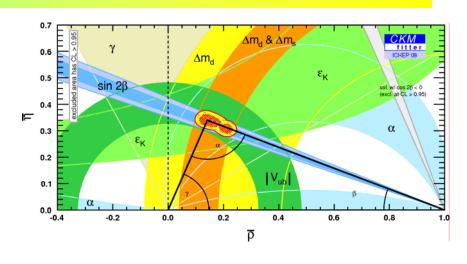
CP violation in B system: from the discovery (2001) to a precision measurement (2006)

 $\sin 2\phi_1/\sin 2\beta$ from b \rightarrow ccs


535 M BB pairs

 $\sin 2\phi_1 = 0.642 \pm 0.031 \text{ (stat) } \pm 0.017 \text{ (syst)}$

All measurements combined...

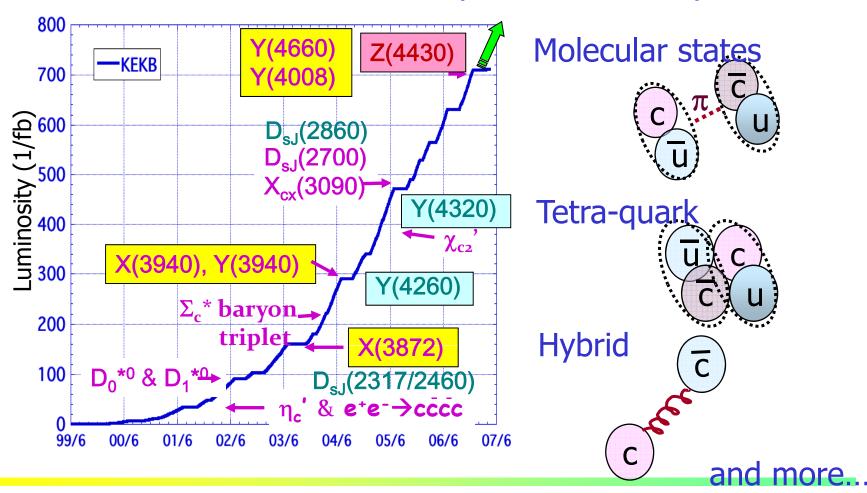

Constraints from measurements of angles and sides of the unitarity triangle

→ Remarkable agreement

Consistent picture

Relations between parameters as expected in the Standard model \rightarrow

Nobel prize 2008!


B factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau \nu$, $D\tau \nu$)
- b→s transitions: probe for new sources of CPV and constraints from the b→sγ branching fraction
- Forward-backward asymmetry (A_{FB}) in $b \rightarrow sl^+l^-$ has become a powerfull tool to search for physics beyond SM.
- Observation of D mixing
- Searches for rare τ decays
- Observation of new hadrons

New hadrons at B-factories

Discoveries of many new hadrons at B-factories have shed light on a new class of hadrons beyond the ordinary mesons.

Peter Križan, Ljubljana

Luminosity at B factories

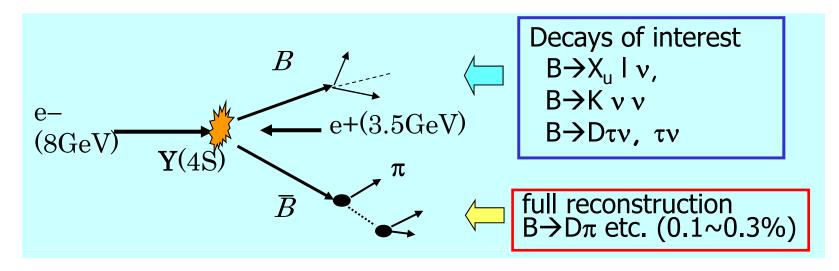
Fantastic performance much beyond design values!

What next?

B factories → is SM with CKM right?

Next generation: Super B factories → in which way is the SM wrong?

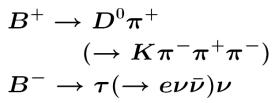
→ Need much more data (two orders!) because the SM worked so well until now → Super B factory

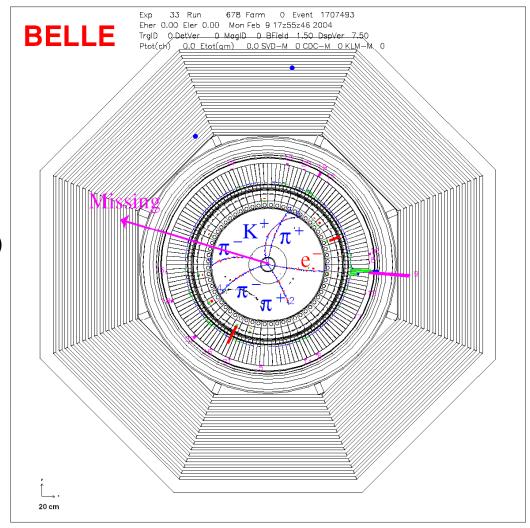

However: it will be a different world in four years, there will be serious competition from LHCb and BESIII

Still, e⁺e⁻ machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more

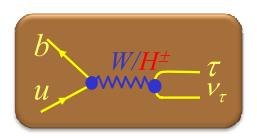
Full Reconstruction Method

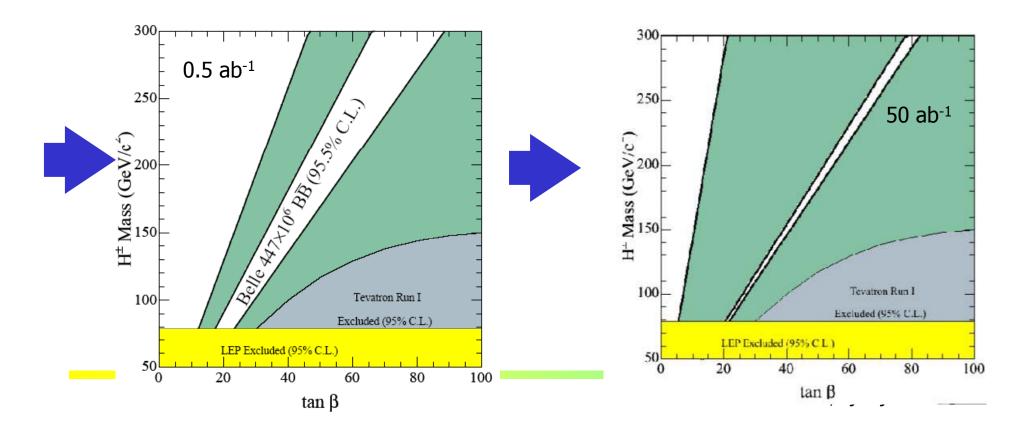
- Fully reconstruct one of the B's to
 - Tag B flavor/charge
 - Determine B momentum
 - Exclude decay products of one B from further analysis




→ Offline B meson beam!

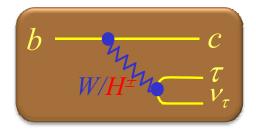
Powerful tool for B decays with neutrinos


Event candidate $B^- \rightarrow \tau^- \nu_{\tau}$



Charged Higgs limits from $B^- \rightarrow \tau^- \nu_{\tau}$

$$r_{H} = \frac{BF(B \to \tau \nu)}{BF(B \to \tau \nu)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2} \beta\right)^{2}$$


 \rightarrow limit on charged Higgs mass vs. tan β

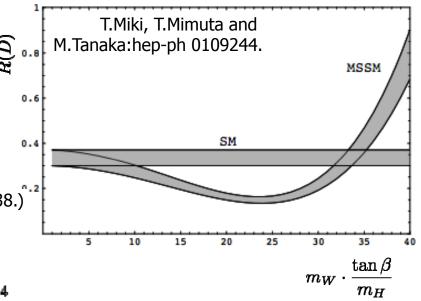
$$B \rightarrow D^{(*)} \tau \nu$$

Semileptonic decay sensitive to charged Higgs

Ratio of τ to μ ,e could be reduced/enhanced significantly

$$R(D) \equiv rac{\mathcal{B}(B o D au
u)}{\mathcal{B}(B o D\ell
u)}$$

Compared to $B \rightarrow \tau \nu$

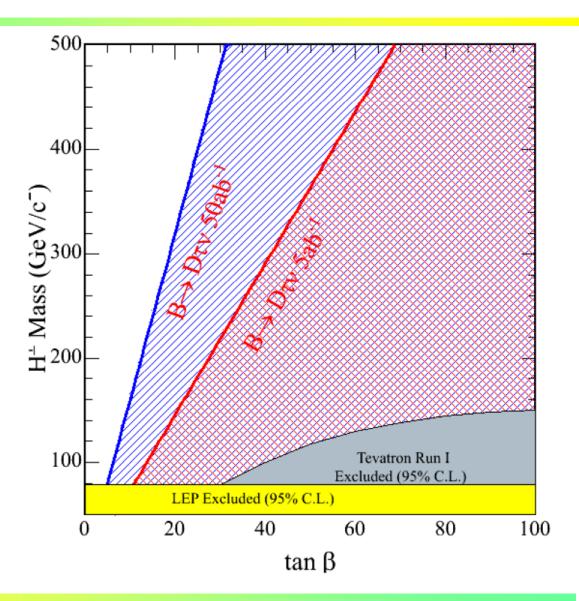

1.Smaller theoretical uncertainty of R(D)

For
$$B\rightarrow \tau \nu$$
, There is O(10%) f_B uncertainty from lattice QCD

2.Large expected Br (Ulrich Nierste arXiv:0801.4938.) $\mathcal{B}(B^- \to D^0 \tau^- \bar{\nu}_{\tau})^{SM} = (0.71 \pm 0.09)\%$

$$\mathcal{B}(\bar{B^0} \to D^+ \tau^- \bar{\nu}_{\tau})^{SM} = (0.66 \pm 0.08)\%$$

$$\mathcal{B}(B \to \tau \nu) = [1.65^{+0.38}_{-0.37}(stat)^{+0.35}_{-0.37}(syst)] \times 10^{-4}$$

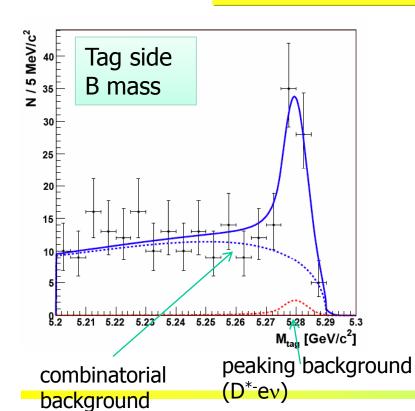


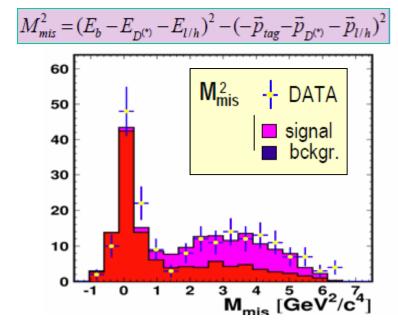
- 3. Differential distributions can be used to discriminate W⁺ and H⁺
- _4. Sensitive to different vertex $B \rightarrow \tau \nu$: H-b-u, $B \rightarrow D\tau \nu$: H-b-c (LHC experiments sensitive to H-b-t)

$B \rightarrow D\tau \nu$

Exclusion plots for tanβ and H⁺ mass for 5ab⁻¹ and 50ab⁻¹

$B \rightarrow D^* \tau \nu - similar constraints on H^+$

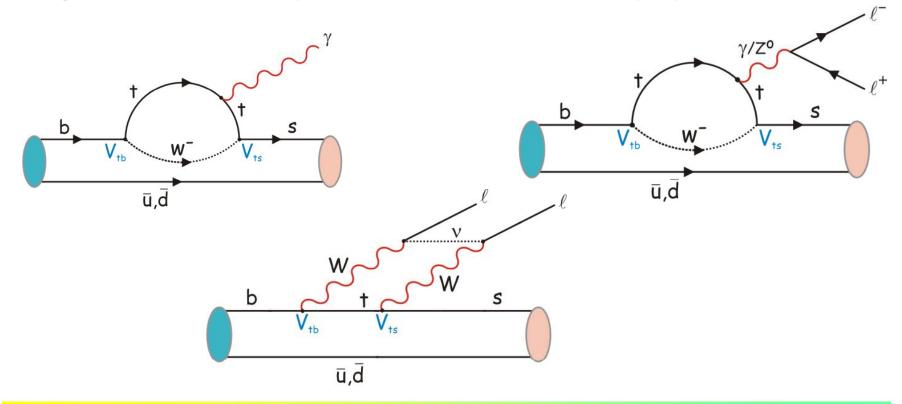

[PRL 99, 191807 (2007)]


FIRST OBSERVATION - 2007

 $BF(B^0 \to D^{*-} \tau^+ \nu_{\tau}) = (2.02^{+0.40}_{-0.37} (stat) \pm 0.37 (syst)) \times 10^{-2}$

535M $B\overline{B}$

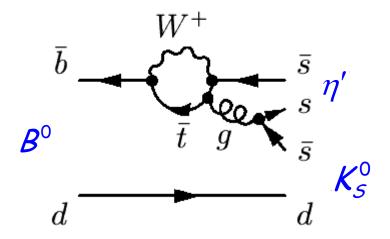
SIGNAL YIELD $N_s = 60^{+12}_{-11}$ 6.7 σ (5.2 σ with syst.)


Update soon!

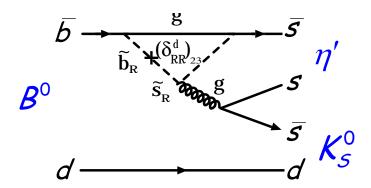
Peter Križan, Ljubljana

Search for new physics in FCNC decays

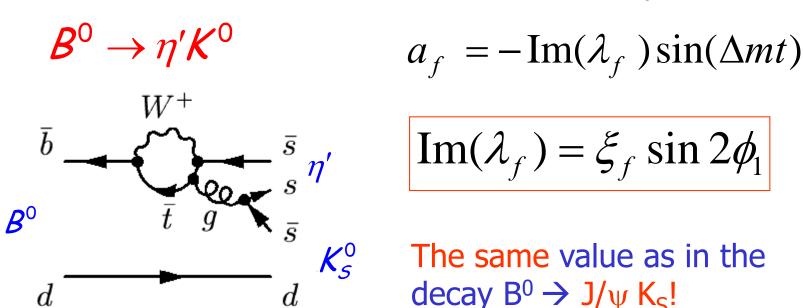
Flavour changing neutral current (FCNC) processes (like $b \rightarrow s$, $b \rightarrow d$) are fobidden at the tree level in the Standard Model. Proceed only at low rate via higher-order loop diagrams. Ideal place to search for new physics.



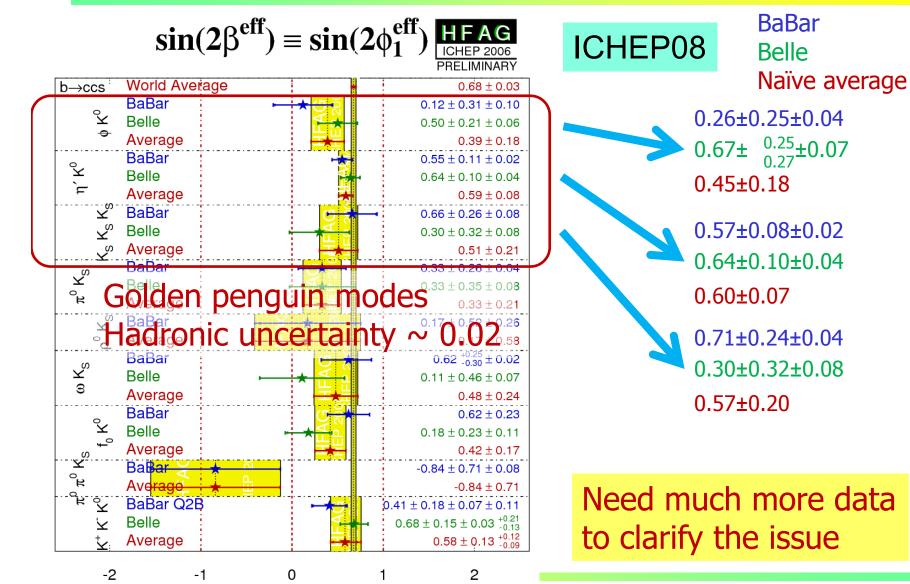
How can New Physics contribute to $b \rightarrow s$?


For example in the process:

Ordinary penguin diagram with a t quark in the loop


Diagram with supersymmetric particles

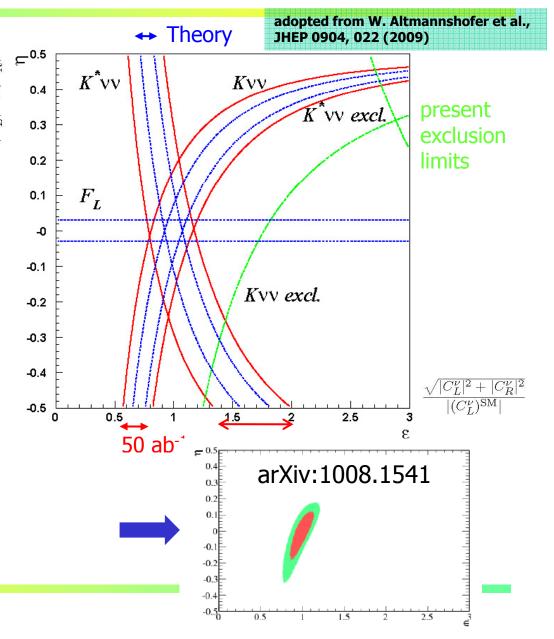
Searching for new physics phases in CP violation measurements in b→s decays


Prediction in SM: CP violation parameter

This is only true if there are no other particles in the loop! In general the parameter can assume a different value $\sin 2\phi_1^{\text{eff}}$

Search for NP: b→sqq

 $\mathsf{B} \to \mathsf{K}^{(*)} \mathsf{V} \mathsf{V}$

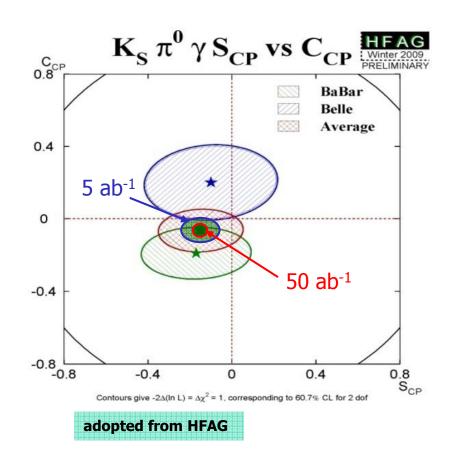

arXiv:1002.5012

 $B \to K \nu \nu$, $\mathcal{B} \sim 4.10^{-6}$ $B \to K^* \nu \nu$, $\mathcal{B} \sim 6.8.10^{-6}$

SM: penguin+box

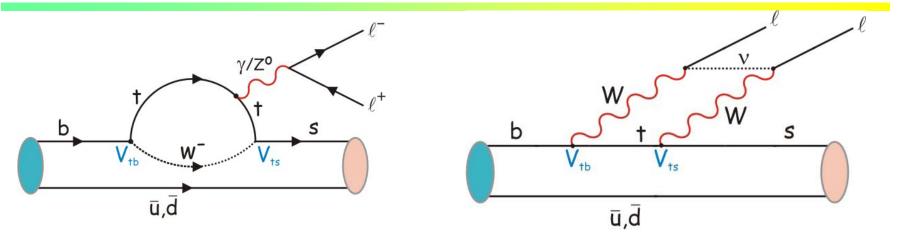
Look for departure from the expected value \rightarrow information on couplings C_R^{ν} and C_L^{ν} compared to $(C_L^{\nu})^{SM}$

Again: fully reconstruct one of the B mesons, look for signal (+nothing else) in the rest of the event.



CP violation in $B \rightarrow K_S \pi^0 \gamma$

CP violation in B \rightarrow K_S $\pi^0\gamma$ decays: Search for right-handed currents

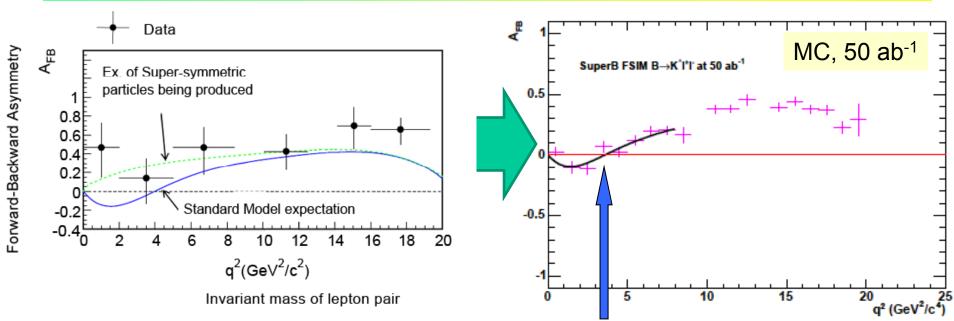

$$B \rightarrow K^* \gamma$$
, $\mathcal{B} \sim 4.0 \cdot 10^{-5}$
 $\delta S \sim 0.2$ (present)
 $\Rightarrow \sim a \text{ few } \% \text{ at } 50 \text{ ab}^{-1}$

not possible @ LHCb

Another FCNC decay: $B \rightarrow K^* I^+ I^-$

b \rightarrow s l⁺l⁻ was first measured in B \rightarrow K l⁺l⁻ by Belle (2001).

Important for further searches for the physics beyond SM


Particularly sensitive: backward-forward asymmetry in K* I+I

$$A_{FB} \propto \Re \left[C_{10}^* (sC_9^{eff}(s) + r(s)C_7) \right]$$

 C_i : Wilson coefficients, abs. value of C_7 from $b \rightarrow s\gamma$ s=lepton pair mass squared

$A_{FB}(B\rightarrow K^* I^+ I^-)[q^2]$

Data: very interesting!

Zero-crossing q^2 for A_{FB} will be determined with a 5% error with 50ab⁻¹.

Strong competition from LHCb and ATLAS/CMS

A difference in the direct violation of CP symmetry in B+ and B⁰ decays

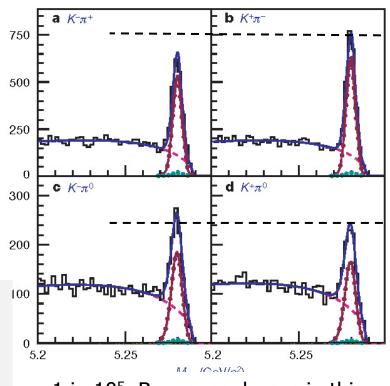
CP asymmetry

$$\mathcal{A}_{f} = \frac{N(\overline{B} \to \overline{f}) - N(B \to f)}{N(\overline{B} \to \overline{f}) + N(B \to f)}$$

Difference between B⁺ and B⁰ decays

In SM expect $\mathcal{A}_{K^{\pm}\pi^{\mp}} \approx \mathcal{A}_{K^{\pm}\pi^{-0}}$

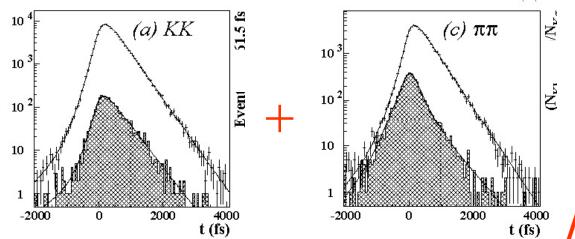
Measure:


$$\mathcal{A}_{K^{\pm}\pi^{\mp}} = -0.094 \pm 0.018 \pm 0.008$$
$$\mathcal{A}_{K^{\pm}\pi^{0}} = +0.07 \pm 0.03 \pm 0.01$$

$$\Delta A = +0.164 \pm 0.037$$

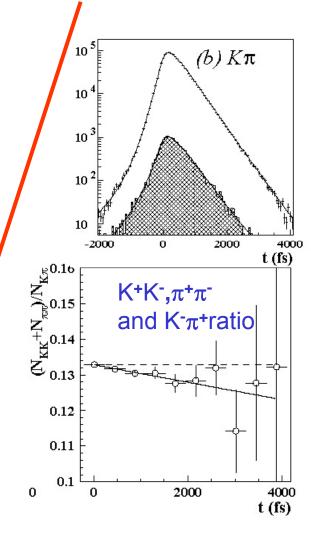
A problem for a SM explanation (in particular when combined with other measurements)

A hint for new sources of CP violation?



~1 in 10⁵ B mesons decays in this decay mode Belle, Nature 452, 332 (2008)

D⁰ mixing in K+K-, π + π -

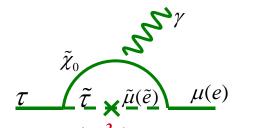


Difference of lifetimes visually observable in the ratio of the distributions

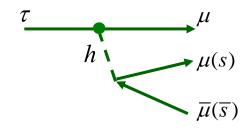
Real fit:

$$y_{CP} = (1.31 \pm 0.32 \pm 0.25) \%$$

→ Observation of D mixing!→ on a high side of SM predictions



CP violation in the D system would be a clear sign of new physics



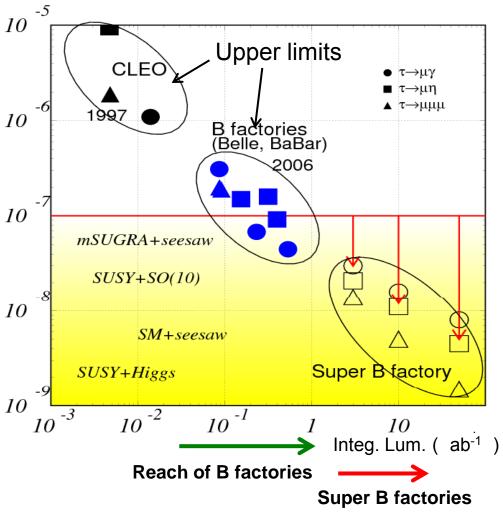
LFV and New Physics

$$\tau \rightarrow 3I,I\eta$$

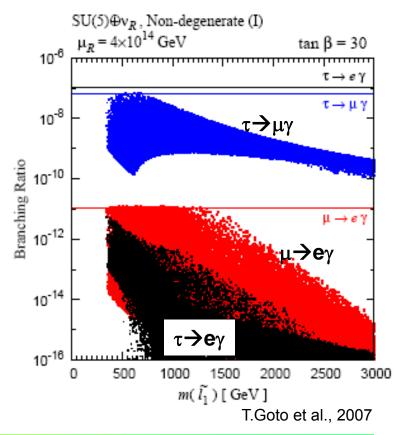
- SUSY + Seasaw $(m_{\tilde{l}}^2)_{23(13)}$
- Large LFV $Br(\tau \rightarrow \mu \gamma) = O(10^{-7})$
- Neutral Higgs mediated decay.
- Important when Msusy >> EW scale. $Br(\tau \rightarrow 3\mu) =$

$$Br(\tau \to \mu \gamma) \equiv 10^{-6} \times \left(\frac{\left(m_{\tilde{L}}^{2}\right)_{32}}{\overline{m}_{\tilde{L}}^{2}}\right) \left(\frac{1 \, TeV}{m_{SUSY}}\right)^{4} \tan^{2} \beta \qquad 4 \times 10^{-7} \times \left(\frac{\left(m_{\tilde{L}}^{2}\right)_{32}}{\overline{m}_{\tilde{L}}^{2}}\right) \left(\frac{\tan \beta}{60}\right)^{6} \left(\frac{100 \, GeV}{m_{A}}\right)^{4}$$

$$4 \times 10^{-7} \times \left(\frac{\left(m_{\tilde{L}}^2\right)_{32}}{\overline{m}_{\tilde{L}}^2}\right) \left(\frac{\tan\beta}{60}\right)^6 \left(\frac{100GeV}{m_A}\right)^4$$


model	$Br(\tau \rightarrow \mu \gamma)$	$Br(\tau \rightarrow III)$	
mSUGRA+seesaw	10 ⁻⁷	10 -9	
SUSY+SO(10)	10-8	10 ⁻¹⁰	
SM+seesaw	10 ⁻⁹	10 ⁻¹⁰	
Non-Universal Z'	10 ⁻⁹	10-8	
SUSY+Higgs	10-10	10 ⁻⁷	

bljana



Rare τ decays

LF violating τ decay?

Theoretical predictions compared to present experimental limits

B Physics	<u>@</u>	Y(4S)
-----------	----------	-------

D I Hysics & I	(15)		Observable	B Factories (2 ab^{-1})	Super B (75 ab ⁻¹)
Observable E	Factories (2 ab ⁻¹)	Super B (75 ab^{-1})	$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$\sin(2\beta) \; (J/\psi K^0)$	0.018	0.005 (†)	$ V_{cb} $ (inclusive)	1% (*)	$0.5\% \ (*)$
$\cos(2\beta) \; (J/\psi K^{*0})$	0.30	0.05	$ V_{ub} $ (exclusive)	8% (*)	$3.0\% \ (*)$
$\sin(2eta) \; (Dh^0)$	0.10	0.02	$ V_{ub} $ (inclusive)	8% (*)	2.0%~(*)
$\cos(2\beta) \; (Dh^0)$	0.20	0.04			
$S(J/\psi \pi^0)$	0.10	0.02	$\mathcal{B}(B o au u)$	20%	4% (†)
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B o \mu u)$	visible	5%
$S(\phi K^0)$	0.13	0.02 (*)	$\mathcal{B}(B o D au u)$	10%	2%
$S(\eta'K^0)$	0.05	0.01 (*)	2(2 / 2//)	2570	270
$S(K_S^0K_S^0K_S^0)$	0.15	0.02 (*)	$\mathcal{B}(B ightarrow ho \gamma)$	15%	3% (†)
$S(K_S^0\pi^0)$	0.15	0.02 (*)		30%	5% (1) 5%
$S(\omega K_s^0)$	0.17	0.03 (*)	$\mathcal{B}(B \to \omega \gamma)$		
$S(f_0K_s^0)$	0.12	0.02 (*)	$A_{CP}(B o K^*\gamma)$	0.007 (†)	0.004 († *)
			$A_{CP}(B o ho\gamma)$	~ 0.20	0.05
$\gamma \ (B \to DK, D \to CP \text{ eigenstates})$	$\sim 15^{\circ}$	2.5°	$A_{CP}(b o s\gamma)$	0.012 (†)	0.004 (†)
$\gamma \; (B o DK, D o ext{suppressed state})$	s) ~ 12°	2.0°	$A_{CP}(b ightarrow(s+d)\gamma)$	0.03	0.006 (†)
$\gamma \ (B o DK, D o ext{multibody states})$	s) ~ 9°	1.5°	$S(K_s^0\pi^0\gamma)$	0.15	0.02 (*)
$\gamma \ (B o DK, ext{combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10
$lpha \; (B o \pi \pi)$	$\sim 16^{\circ}$	3°	$A_{CP}(B o K^*\ell\ell)$	7%	1%
$\alpha \; (B o ho ho)$	$\sim 7^{\circ}$	1-2° (*)	$A^{FB}(B o K^*\ell\ell)s_0$	25%	9%
$lpha\;(B o ho\pi)$	∼ 12°	2°	$A^{FB}(B o X_s\ell\ell)s_0$	35%	5%
α (combined)	$\sim 6^{\circ}$	1-2° (*)	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%
$2\beta + \gamma \; (D^{(*)\pm}\pi^{\mp}, \; D^{\pm}K_{\sigma}^{0}\pi^{\mp})$	20°	5°	$\mathcal{B}(B o\pi uar{ u})$	-	possible
$Z\rho + \gamma \left(D^{\gamma\gamma} - \pi^{\gamma}, D^{+}K_{s}^{\gamma}\pi^{\gamma}\right)$	∠υ"	້ວຸ			

$egin{array}{ccc} extbf{ Thysics} & ext{Sensitivity} \ \mathcal{B}(au ightarrow \mu \gamma) & 2 imes 10^{-9} \ \mathcal{B}(au ightarrow e \gamma) & 2 imes 10^{-9} \ \mathcal{B}(au ightarrow \mu \mu \mu) & 2 imes 10^{-10} \ \mathcal{B}(au ightarrow e e e) & 2 imes 10^{-10} \ \mathcal{B}(au ightarrow \mu \eta) & 4 imes 10^{-10} \ \mathcal{B}(au ightarrow e \eta) & 6 imes 10^{-10} \ \mathcal{B}(au ightarrow \ell K_S^0) & 2 imes 10^{-10} \ \end{array}$

B_s Physics @ Y(5S)

Observable	Error with 1 ab^{-1}	Error with 30 ab ⁻¹
ΔΓ	$0.16 \ \mathrm{ps^{-1}}$	$0.03~{\rm ps}^{-1}$
Γ	$0.07~{ m ps}^{-1}$	$0.01~{\rm ps^{-1}}$
eta_s from angular analysis	20°	8°
A_{SL}^s	0.006	0.004
$A_{ m CH}$	0.004	0.004
${\cal B}(B_s o\mu^+\mu^-)$	=	$< 8 \times 10^{-9}$
$\left V_{td}/V_{ts} ight $	0.08	0.017
$\mathcal{B}(B_s o\gamma\gamma)$	38%	7%
eta_s from $J/\psi\phi$	10°	3°
β_s from $B_s \to K^0 \bar{K}^0$	24°	11°

Charm mixing and CP

Mode	Observable	$\Upsilon(4S)$	$\psi(3770)$
		(75 ab^{-1})	(300 fb^{-1})
$D^0 \rightarrow K^+\pi^-$	x'^2	3×10^{-5}	
	y'	$7 imes 10^{-4}$	
$D^0 \rightarrow K^+K^-$	y_{CP}	5×10^{-4}	
$D^0 \to K_S^0 \pi^+ \pi^-$	x	4.9×10^{-4}	
	y	3.5×10^{-4}	
	q/p	3×10^{-2}	
	ϕ	2°	
$\psi(3770) \rightarrow D^0 \overline{D}^0$	x^2		$(1-2) \times 10^{-5}$
	y		$(1-2) \times 10^{-3}$
	$\cos \delta$		(0.01-0.02)

Charm FCNC

$D^0 \to e^+e^-, D^0 \to \mu^+\mu^-$	1×10^{-8}
$D^0 \to \pi^0 e^+ e^-, D^0 \to \pi^0 \mu^+ \mu^-$	2×10^{-8}
$D^0 \to \eta e^+ e^-, D^0 \to \eta \mu^+ \mu^-$	$3 imes 10^{-8}$
$D^0 \to K^0_{\scriptscriptstyle S} e^+ e^-, D^0 \to K^0_{\scriptscriptstyle S} \mu^+ \mu^-$	$3 imes 10^{-8}$
$D^+ \rightarrow \pi^+ e^+ e^-, D^+ \rightarrow \pi^+ \mu^+ \mu^-$	$1 imes 10^{-8}$

Sensitivity

$$\begin{array}{lll} D^{0} \rightarrow e^{\pm}\mu^{\mp} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{+}e^{\pm}\mu^{\mp} & 1 \times 10^{-8} \\ D^{0} \rightarrow \pi^{0}e^{\pm}\mu^{\mp} & 2 \times 10^{-8} \\ D^{0} \rightarrow \eta e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ D^{0} \rightarrow K_{s}^{0}e^{\pm}\mu^{\mp} & 3 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-}e^{+}e^{+}, \ D^{+} \rightarrow K^{-}e^{+}e^{+} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-}\mu^{+}\mu^{+}, \ D^{+} \rightarrow K^{-}\mu^{+}\mu^{+} & 1 \times 10^{-8} \\ D^{+} \rightarrow \pi^{-}e^{\pm}\mu^{\mp}, \ D^{+} \rightarrow K^{-}e^{\pm}\mu^{\mp} & 1 \times 10^{-8} \end{array}$$

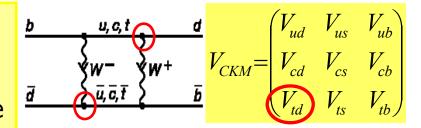
M. Giorgi, ICHEP2010

Physics at a Super B Factory

- There is a good chance to see new phenomena;
 - CPV in B decays from the new physics (non KM).
 - Lepton flavor violations in τ decays.
- They will help to diagnose (if found) or constrain (if not found) new physics models.
- B $\rightarrow \tau \nu$, D $\tau \nu$ can probe the charged Higgs in large tan β region.
- Physics motivation is independent of LHC.
 - If LHC finds NP, precision flavour physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be a unique way to search for the >TeV scale physics (=TeV scale in case of MFV).

There are many more topics: CPV in charm, new hadrons, ...

Super B Factory Motivation 2


Lessons from history: the top quark

Physics of top quark

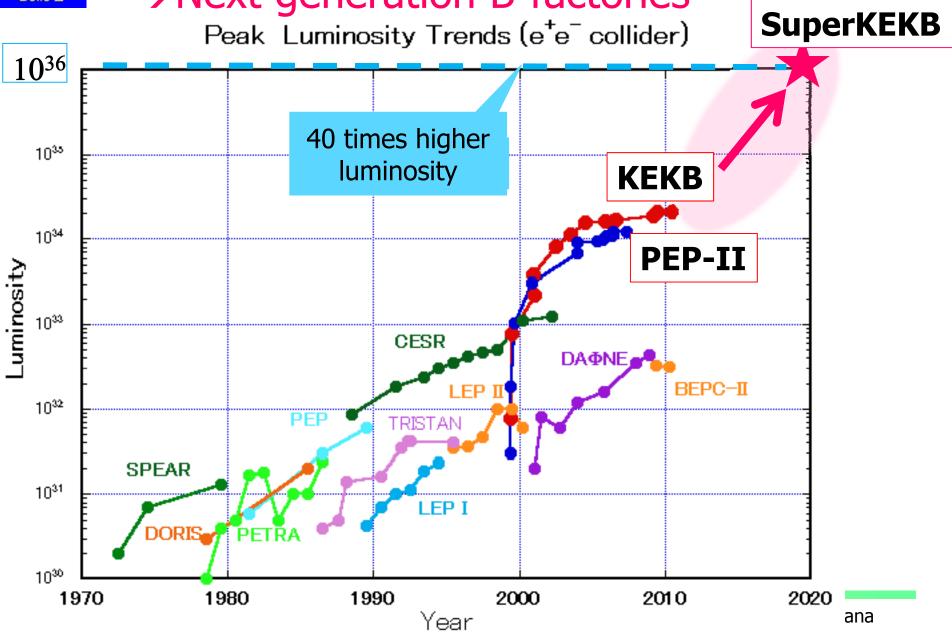
First estimate of mass: BB mixing → ARGUS

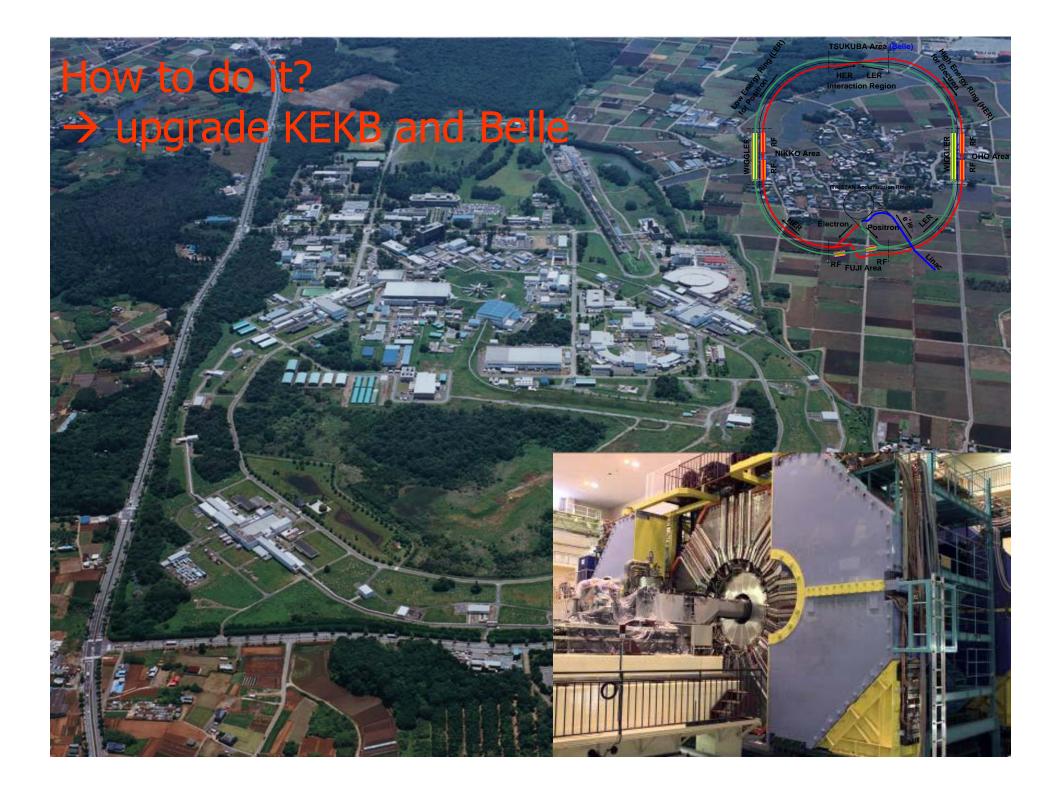
Direct production, Mass, width etc. → CDF/D0

Off-diagonal couplings, phase → BaBar/Belle

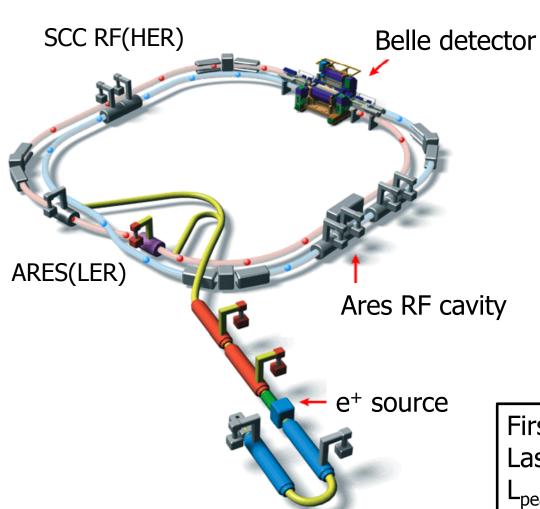
• Even before that: prediction of charm quark from the GIM mechanism, and its mass from K⁰ mixing

Recent update of the physics reach with 50 ab⁻¹: Physics at Super B Factory (Belle II authors + guests)


hep-ex > arXiv:1002.5012



Accelerator


Need O(100x) more data → Next generation B-factories

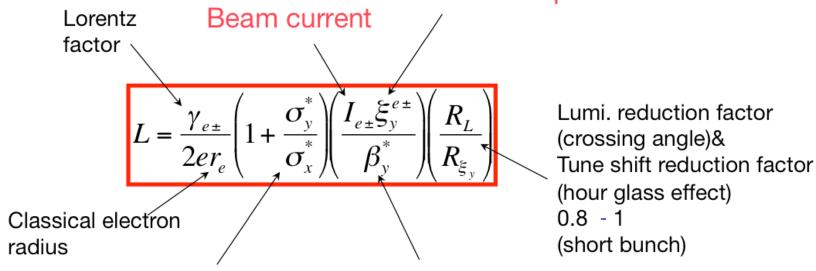
The KEKB Collider & Belle Detector

- $-e^{-}$ (8 GeV) on e^{+} (3.5 GeV)
 - √s ≈ m_{Y(4S)}
 - Lorentz boost: $\beta \gamma = 0.425$
- 22 mrad crossing angle
- Operating since 1999

Peak luminosity (WR!): 2. $1 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

=2x design value

First physics run on June 2, 1999 Last physics run on June 30, 2010 $L_{peak} = 2.1 \times 10^{34} / \text{cm}^2 / \text{s}$ $L > 1 \text{ab}^{-1}$


→ Can start construction of SuperKEKB and Belle II

ategies for increasing luminosity

Beam size ratio@IP 1 - 2 % (flat beam)

Vertical beta function@IP

- (1) Smaller β_{v}^{*}
- (2) Increase beam currents &
- (3) Increase ξ_y

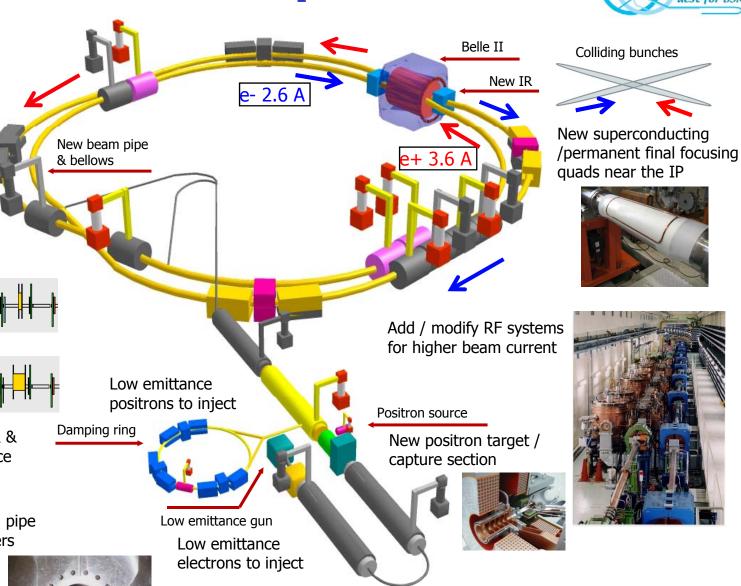
"Nano-Beam" scheme

Collision with very small spot-size beams

Invented by Pantaleo Raimondi for SuperB

Machine design parameters

naramatara		KEKB		SuperKEKB		unito
parameters		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7	GeV
Half crossing angle	φ	11		41	.5	mrad
Horizontal emittance	ε _X	18	24	3.2	5.0	nm
Emittance ratio	κ	0.88	0.66	0.27	0.25	%
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.31	mm
Beam currents	I b	1.64	1.19	3.60	2.60	Α
beam-beam parameter	ξy	0.129	0.090	0.0886	0.0830	
Luminosity	L	2.1 x 10 ³⁴		8 x	10 ³⁵	cm ⁻² s ⁻¹

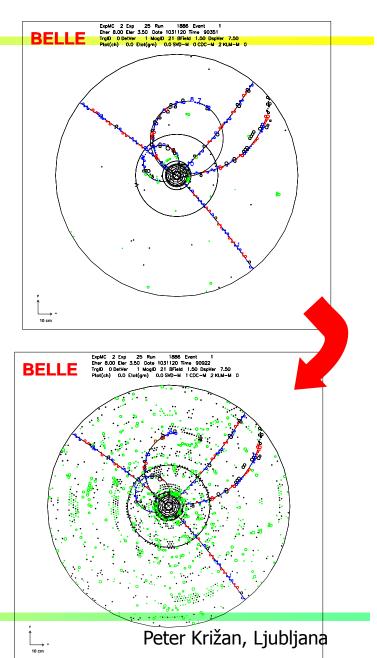

- Small beam size & high current to increase luminosity
- Large crossing angle
- Change beam energies to solve the problem of LER short lifetime

New beam pipe & bellows Replace short dipoles with longer ones (LER) Damping ring Redesign the lattices of HER & LER to squeeze the emittance TiN-coated beam pipe with antechambers [NEG Pump

[Beam Channel]

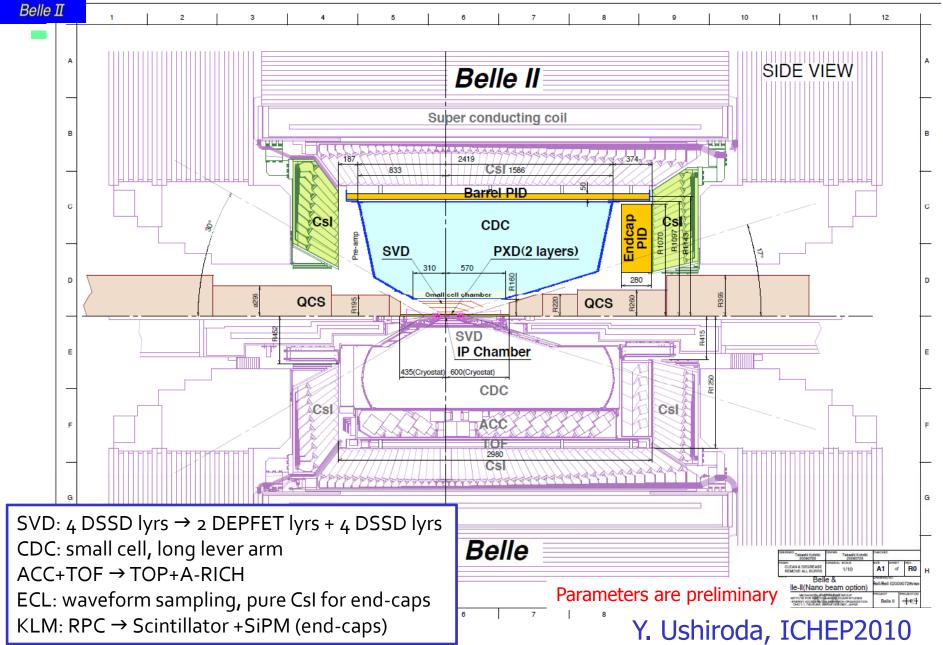
To get x40 higher luminosity

Detector

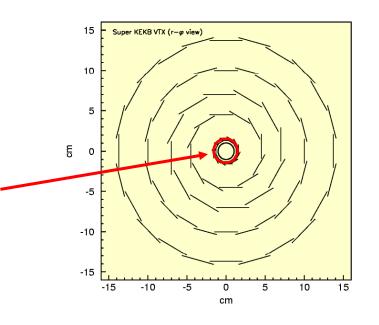

Requirements for the Belle II detector

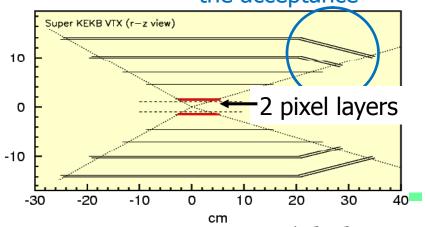
Critical issues at L= 8 x 10³⁵/cm²/sec

- ► Higher background (×10-20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- ▶ Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low p μ identification ← sμμ recon. eff.
 - hermeticity ← ν "reconstruction"


Solutions:

- ▶ Replace inner layers of the vertex detector with a pixel detector.
- ▶ Replace inner part of the central tracker with a silicon strip detector.
- ▶ Better particle identification device
- ▶ Replace endcap calorimeter crystals
- ▶ Faster readout electronics and computing system.


Belle II in comparison with Belle

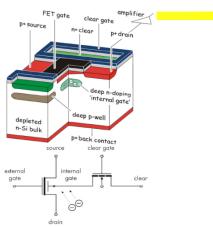


Vertex detector upgrade: PXD+SVD

- Configuration: 4 layers → 6 layers (outer radius = 8cm→14cm)
 - More robust tracking
 - Higher Ks vertex reconstr. efficiency
- Inner radius: $1.5 \text{cm} \rightarrow 1.3 \text{cm}$
 - Better vertex resolution
- Sensors of the two innermost layers L1+L2: DEPFET Pixel sensors →PXD
- Layers 3-6: normal double sided Si detector (DSSD) →SVD
- Strip readout chip: VA1TA → APV25
 - Reduction of occupancy coming from beam background.
 - Pipeline readout to reduce dead time.

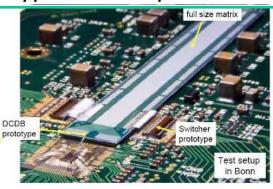
Slanted layers to keep the acceptance

Vertex Detector


DEPFET:

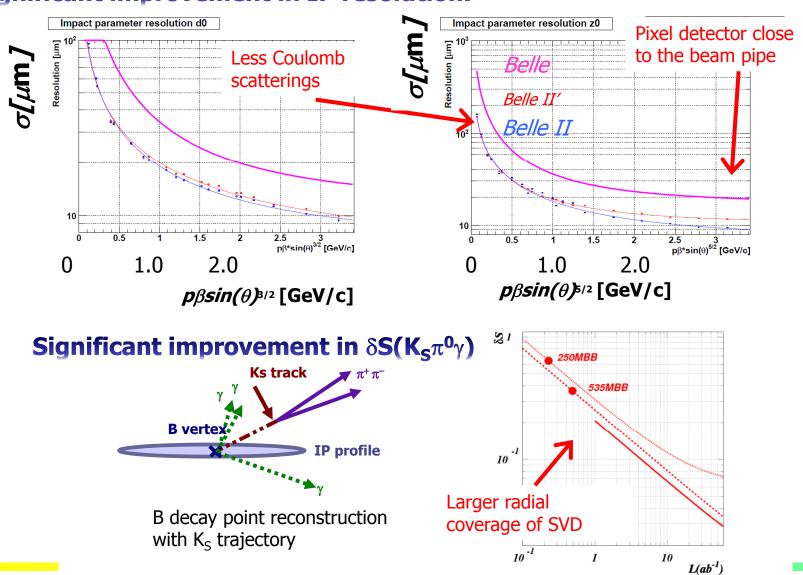
http://aldebaran.hll.mpg.de/twiki/bin/view/DEPFET/WebHome

Beam Pipe DEPFET		r = 10mm
	Layer 1	r = 14mm
	Layer 2	r = 22mm
DSSD	-	
	Layer 3	r = 38mm
	Layer 4	r = 80mm
	Layer 5	r = 115mm
	Layer 6	r = 140mm


DEpleted P-channel FET

Mechanical mockup of pixel detector

Prototype DEPFET pixel sensor and readout

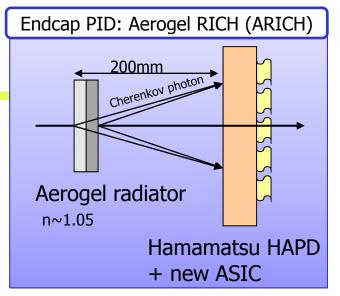

A prototype ladder using the first 6 inch DSSD from Hamamatsu has been assembled and tested.

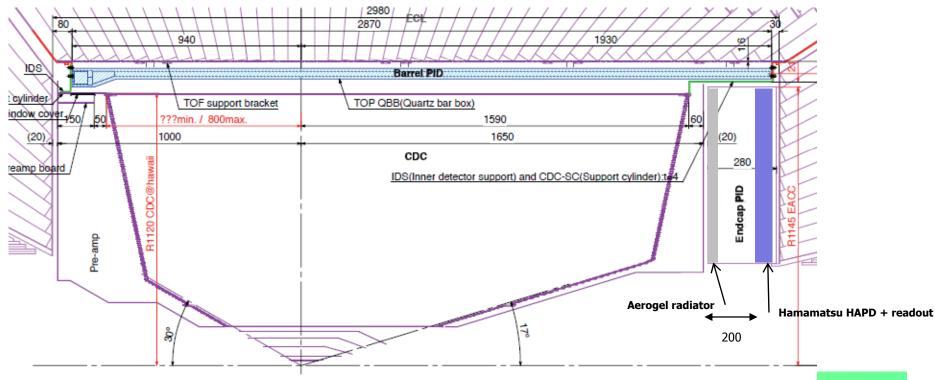
Expected performance $\sigma = a + \frac{b}{p\beta \sin^{\nu} \theta}$

$$\sigma = a + \frac{b}{p\beta \sin^{\nu} \theta}$$

Significant improvement in IP resolution!

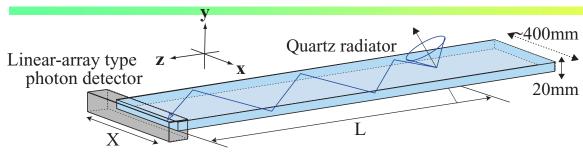
Particle Identification Devices

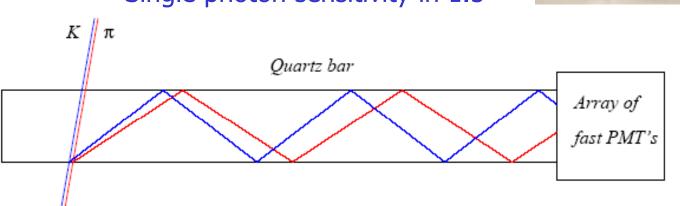

Barrel PID: Time of Propagation Counter (TOP)

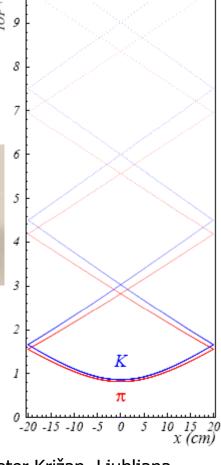

MCP-PMT Focus mirror (sphere, r=7000)

Backward Quartz radiator Forward

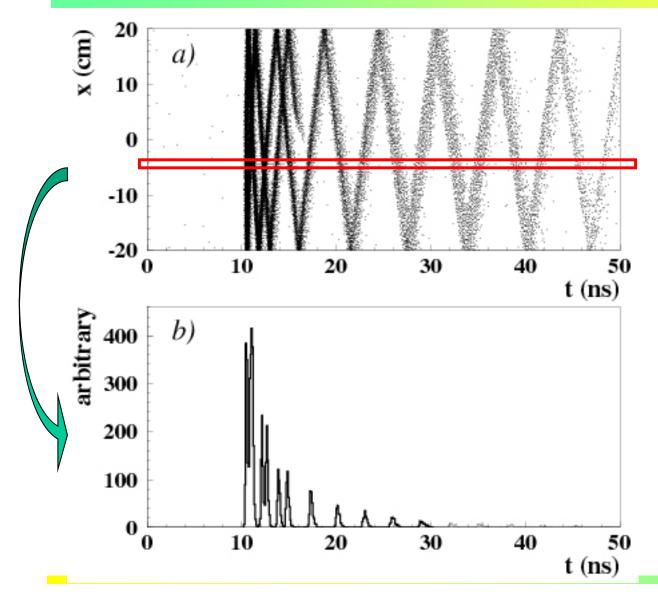
Focusing mirror Small expansion block


Hamamatsu MCP-PMT (measure t, x and y)



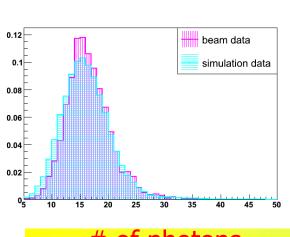

Barrel PID: Time of propagation (TOP) counter

- Cherenkov ring imaging with precise time measurement.
- Reconstruct angle from two coordinates and the time of propagation of the photon
 - Quartz radiator (2cm)
 - Photon detector (MCP-PMT)
 - Good time resolution ~ 40 ps
 - Single photon sensitivity in 1.5

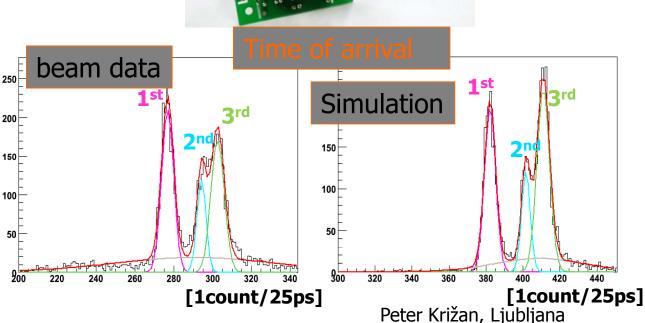


Peter Križan, Ljubljana

TOP image


Pattern in the coordinate-time space ('ring') of a pion hitting a quartz bar with ~80 MCP-PMT channels

Time distribution of signals recorded by one of the PMT channels: different for π and K

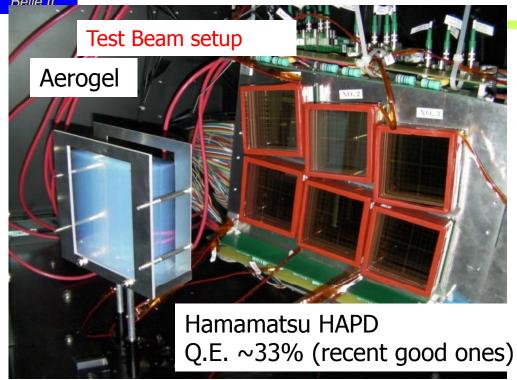


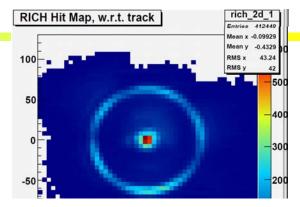
TOP (Barrel PID)

- Quartz radiator
 - 2.6m^L x 45cm^W x 2cm^T
 - Excellent surface accuracy
- MCP-PMT
 - Hamamatsu 16ch MCP-PMT
 - Good TTS (<35ps) & enough lifetime
 - Multialkali photo-cathode → SBA
- Beam test in 2009
 - # of photons consistent
 - Time resolution OK

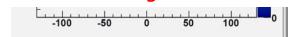
of photons

quartz

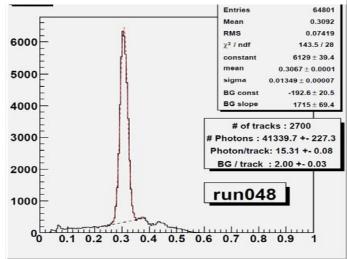

Beam spot


915mm

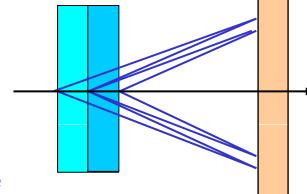
875mm


Belle II Belle II

Aerogel RICH (endcap PID)



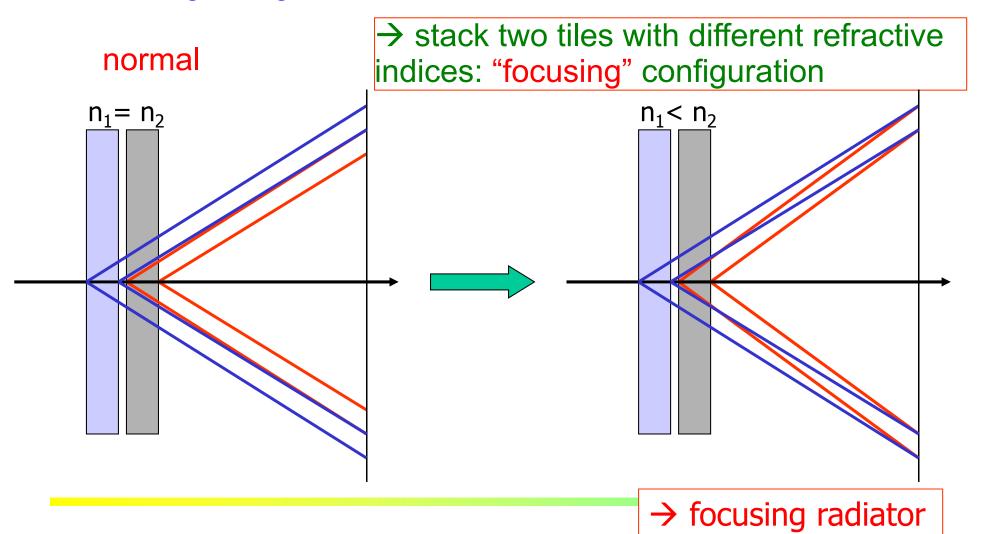
Clear Cherenkov image observed



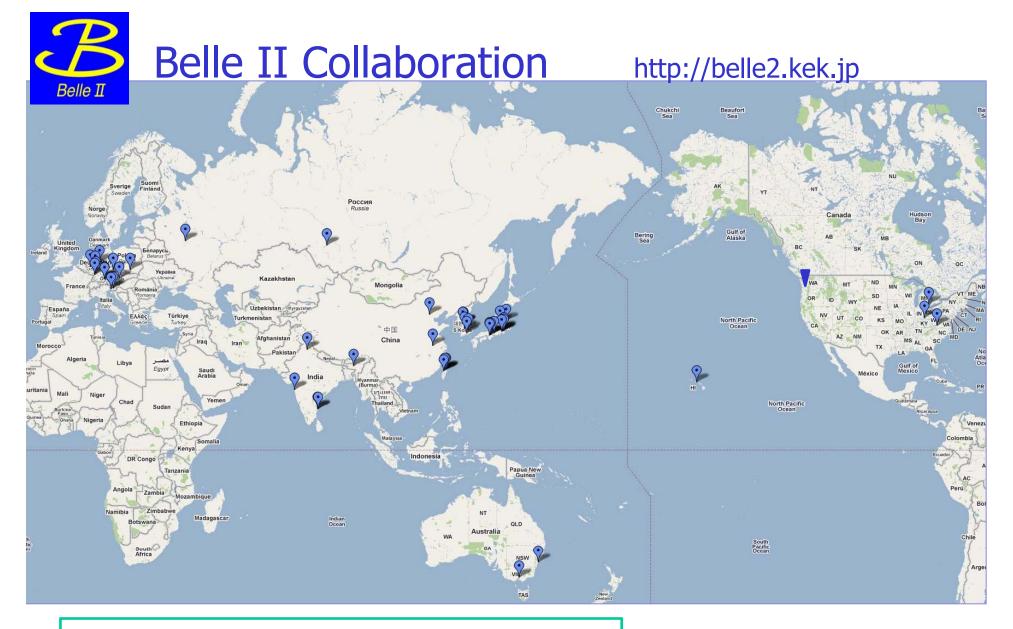
Cherenkov angle distribution

RICH with a novel "focusing" radiator – a two layer radiator

Employ multiple layers with different refractive indices > Cherenkov images from individual layers overlap on the photon detector.


6.6 σ π /K at 4GeV/c!

Peter Križan, Ljubljana


Radiator with multiple refractive indices

How to increase the number of photons without degrading the resolution?

Status of the project

13 countries/regions, 54 institutes

>300 collaborators

Tokyo Metropolitan in Belle and Belle-II

TMU@Belle:

- Sumiyoshi-san at the heart of the experiment!
- Important analyses (full reconstruction sample)

The TMU group has been contributing significantly to the Belle-II project:

 PID systems, in particular the research and development of the aerogel RICH photo-sensor, the HAPD (in collaboration with Hamamatsu), and its read-out

Belle II is looking forward to a continuation of the excellent collaboration with TMU

SuperKEKB/Belle II funding Status

KEKB upgrade has been approved

- 5.8 oku yen (~MUSD) for Damping Ring (FY2010)
- 100 oku yen for machine -- Very Advanced Research Support Program (FY2010-2012)

Continue efforts to obtain additional funds to complete

construction as scheduled.

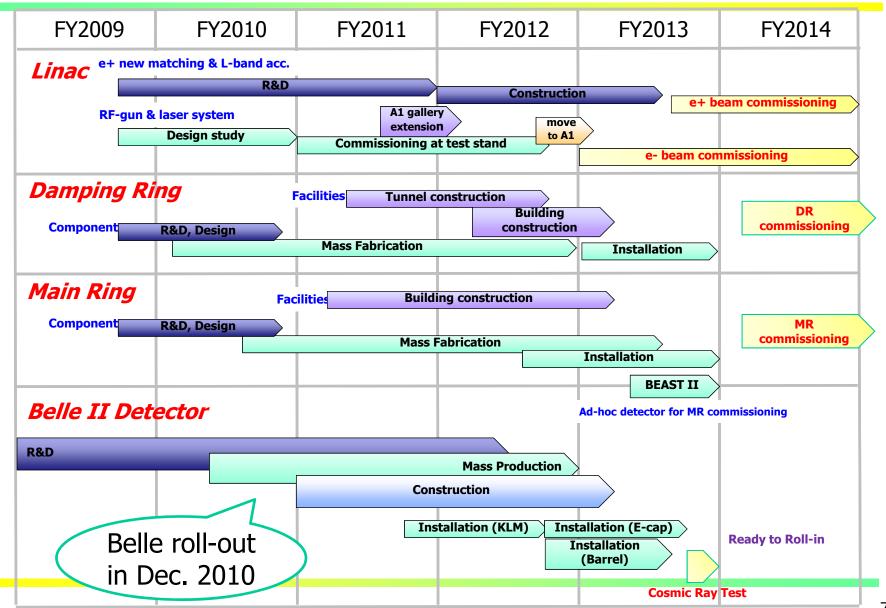
Several non-Japanese funding agencies have already allocated sizable funds for the upgrade.

Press Release

KEKB upgrade plan has been approved

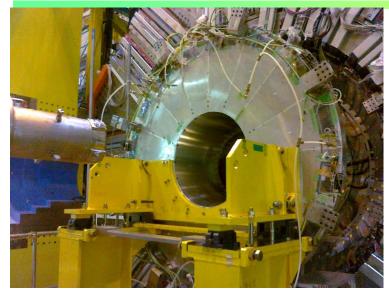
June 23, 2010 High Energy Accelerator Research Organization (KEK)

The MEXT, the Japanese Ministry that supervises KEK, has announced that it will appropriate a budget of 100 oku-yen (approx \$110M) over the next three years starting this Japanese fiscal year (JFY2010) for the high performance upgrade program of KEKB. This is part of the measures taken under the new "Very Advanced Research Support Program" of the Japanese government.


"We are delighted to hear this news," says Masanori Yamauchi, former spokesperson for the Belle experiment and currently a deputy director of the Institute of Particle and Nuclear Studies of KEK. "This three- year upgrade plan allows the Belle experiment to study the physics from decays of heavy flavor particles with an unprecedented precision. It means that KEK in Japan is launching a renewed research program in search for new physics by using a technique which is complementary to what is employed at LHC at CERN."

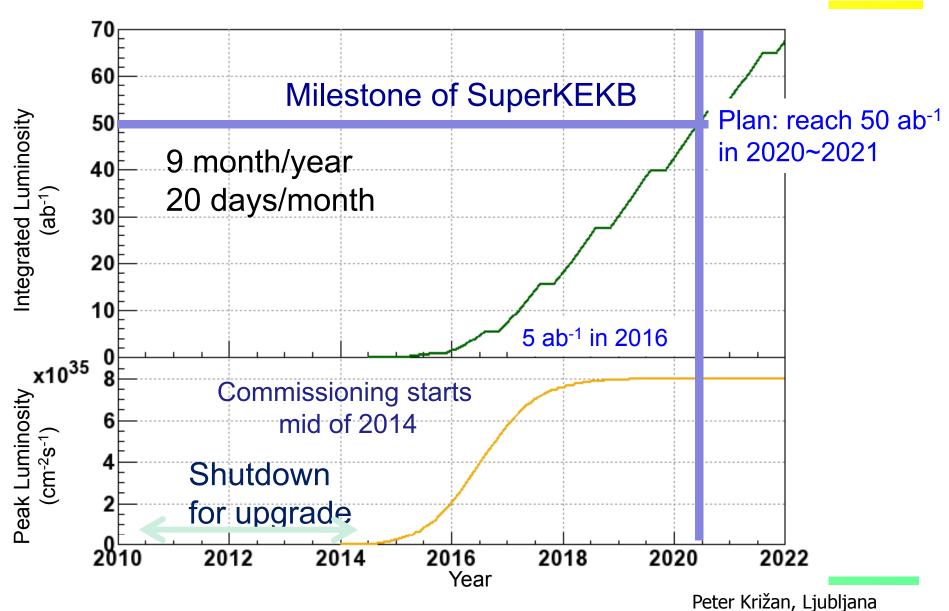
> [Media Contact] Youhei Morita, Head of Public Relations Office, KEK tel. +81-29-879-6047

→construction started!



Construction Schedule of SuperKEKB/Belle II

This week: taking out the SVD2 – vertex detector



Luminosity upgrade projection

Summary

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance, achieving and surpasing design perfomance
- Major upgrade at KEK in 2010-14 → SuperKEKB+Belle II, L x40, construction started
- Physics reach updates available
- Expect a new, exciting era of discoveries, complementary to the LHC
- Belle II is looking forward to a continuation of an excellent collaboration with Tokyo Metropolitan U.