

Univerza v Ljubljani

Requirements to the detectors

Peter Križan University of Ljubljana and J. Stefan Institute

SuperKEKB open proto-collaboration meeting, March 19-20, 2008

March 19, 2008

SuperKEKB open collaboration meeting

Peter Križan, Ljubljana

Why upgrade the Belle detector? How to upgrade? Subsystems, options How to proceed

•Based on slides shown by Y. Ushiroda at BNM2008 and Belle PAC

•Details of individual subdetectors \rightarrow see the talks later today and tomorrow

Motivation for the detector upgrade

- 1. Need a better performance, better physics sensitivities and operation at higher rates
- 2. Operation under higher background rates

Motivation for the detector upgrade

Need a better performance, better physics sensitivities and operation at higher rates

- better π/K separation for $B \rightarrow \rho \gamma$ decays
- low momentum μ identification \rightarrow s $\mu\mu$ recon. eff.
- hermeticity $\rightarrow v$ "reconstruction"

ı, Ljubljana

Projected luminosity (preliminary)

Conservative scenario – quicker with more money!

Background projection (preliminary)

Beam Background (LoI)

Beam Background (present)

Several to 20 times more background (depending on I_{beam})

Baseline design for the upgrade

One of the possible designs; minimum modification to the Belle structure Comparable or better performance under 20 times more background

Motivation of simulation studies

- Detector design is flexible. A few limitations:
 - Should work under 20 times more background
 - Try to keep the same mechanical structure for the outer detectors (ECL,KLM)
 - Technologically feasible (within a few years)
 - Financially possible
- With these limitations, we wish to have the best detector for future physics analyses
 - When the limitation is tight, we look for a compromise rather than the optimum point.

Use fast and full MC, both tuned with present Belle data

Key points of SVD upgrade

Options we have

- Sensor
 - Pixels (SOI, DEPFET)
 - DSSD (striplet/normal)
- Readout chip
 - APV25
 - $t_p = 50$ ns, pipelined, weak at high C_d
 - VA1TA (currently used)
 - $t_p = 800$ ns, hold & readout
 - Own ASIC

Open questions:

8.5mm

- 1. Inner radius
- 2. Outer radius
- 3. Material budget
- 4. Readout pitch of outer layers
- 5. Slant angle

Baseline Design (LoI '04)

- T=0 option (2012) for $L = \sim 10^{35}$
 - Keep beampipe radius 1.5cm same as current
 - Current SVD configuration + 2 outer layers
 - Improve Ks efficiency. Replace CDC inner layers
 - Similar design DSSD can be used
 - Fast shaping(~50ns) + time slice
- Further upgrade for L $>10^{35}$
 - Smaller beampipe radius (r =1cm or less)
 - Innermost (thin) pixel layers
 - Improve impact parameter resolution

Pixels could also come on day 1 if ready!

Outer layers and outer radius

• Long sensor \rightarrow large capacitance \rightarrow big noise

Matching efficiency for Ks

$K_{\rm S}$ daughter tracks affected by S/N degradation Loose 20% events with 4 times worse S/N

Chip on sensor?

(Drawings not to scale)

To use APV25 chips for the outer layers, they have to be put on top of the sensors

T. Kawasaki

- 1. Material okay?
- 2. Cooling possible?
- 3. Stable?

Material impact on vertex resolution

	π ⁺ π ⁻ (31μm)	J/ ψ K _S (36μm)	D + D - (43μm)	Κ[*](K_Sπ⁰) γ (128μm)	
2×ρ for SVD,CDC	6%	11%	19%		
2×ρ for SVD	6%	11%	21%		
2×ρ for SVD lyr1,2	6%	11%	19%		
2×ρ for SVD lyr3,4	0%	0%	0%		
2×p for SVD lyr3,4 + cooling tube	0%	0%	0%	7%	
	No degradation				

No degradation

•No problem to increase the material in outer layers for 'normal' vertex reconstruction.

•Dilutes the merit of having a larger volume for $\ensuremath{\mathsf{K}_{\mathsf{S}}}$

Other MC results

•Momentum resolution: is not affected by material in SVD

Key points of CDC upgrade

CDC main parameters

	Present	Upgrade
Radius of inner boundary (mm)	77	160
Radius of outer boundary (mm)	880	1140
Radius of inner most sense wire (mm)	88	172
Radius of outer most sense wire (mm)	863	1120
Number of layers	50	58
Number of sense wires	8400	15104
Effective length of dE/dx measurement (mm)	752	978
Gas	$He-C_2H_6$	$He-C_2H_6$
Diameter of sense wire (µm)	30	30

 $D^*D^*(D^* \to D\pi_s, D \to K3\pi)$

Many low momentum tracks, the hardest case for tracking

Gain in reconstruction efficiency of $B \rightarrow D^*D^*$

Tracker BKG	Belle	Software update	+SVD tracker
Belle	ε =4.3%	ε =7.1%	ε =11.9%
	0% (definition)	+65%	+177%
×5BG		ε =6.3%	ε =11.2%
		+47%	+160%
× 20 BG		ε =3.8%	ε =8.8%
		-12%	+105%

Excellent with help of SVD

Key points of PID upgrade

PID upgrade

Barrel PID

Imaging Cherenkov counter with quartz bars as radiators.

Image read-out: •Time-Of-Propagation (TOP) •Focusing DIRC •Imaging TOP

Similar to DIRC, but instead of two coordinates after a standoff box measure at the bar end:

- One (or two coordinates) with a few mm precision
- Time-of-arrival
- → Excellent time resolution < ~40ps required for single photons in 1.5T B field

TOP image

Pattern in the coordinate-time space ('ring') of a pion hitting a quartz bar with ~80 MAPMT channels

Time distribution of signals recorded by one of the PMT channels: different for π and K

• Detector type

– <u>3-readout type</u>

- Optimized propagation length
- Simple configuration
- Simple ring image

– Focusing type

- Correct chromaticity
- 2/3 of PMTs
 - Cost
 - Easy to replace PMTs because of no middle PMT
- Complicated ring image
 - Need a new reconstruction method
 - May need more sim. study

K. Inami

Possible configuration

- Photo-cathode of MCP-PMT
 - Multi-alkali
 - Almost established production
 - Enough lifetime (with Al layer)
 - GaAsP
 - Better efficiency at longer wavelength→less dispersion
 - Need more production R&D and lifetime test
 - Multi-alkali without protection layer on MCP
 - Better efficiency (x1.6)
 - Almost established production, but need some modification to improve lifetime (3-layer MCP, lower gain etc.)

K. Inami

• K/ π separation power

2997/20/15-20 BCH07

- GaAsP photo-cathode(+>400µm filter), CE=36%

- Similar to BaBar DIRC
 Need more realistic design study by simulation
 - Newsy appendix for support structure
- Narrow space for support structure
 - Quartz, Al wall, (Al honeycomb holder)
- Gaps $ir\phi \rightarrow \sim 10\%$ dead space

~1cm weak region from bar edge

Talk by K. Inami

Talk by K. Inami

- Possible overlapped layout
 - Need 50cm wide quartz bars (← 40cm-width)
 - R1080 of internal radius (\leftarrow R1150 for no overlap)

Interference with calorimeter:

- influence on three photons from $B \rightarrow K^*(K_S \pi^0) \gamma \rightarrow$ MC check \rightarrow no difference between the two TOP configurations
- single photons and π^0

Alternatives: focusing DIRC and imaging TOP

LR

LD

Proximity focusing RICH in the forward region

rat

Requirements and constraints:

- ~ 5 σ K/ π separation @ 1-4 GeV/c
- operation in magnetic field 1.5T
- limited available space ~250 mm

- n = 1.05

- $\theta_c(\pi) \sim 308 \text{ mrad} @ 4 \text{ GeV/c}$
- $-\theta_{c}(\pi)-\theta_{c}(K) \sim 23 \text{ mrad}$
- pion threshold 0.44 GeV/c,
- kaon threshold 1.54 GeV/c
- time-of-flight difference (2m): $t(K) - t(\pi)$ = 180 ps @ 2 GeV/c = 45 ps @ 4 GeV/c

Photon detector options for 1.5T

- HAPD
 - Working samples, being tested on the bench and in the beam
 - Stability, ageing? Need more production R&D
- MCP-PMT
 - Excellent beam and bench performance
 - Good TTS for TOF information
 - <20ps TOF resolution (low momentum PID)
 - Need lifetime estimation
- SiPM (GAPD)
 - Good stability, enough gain and TTS
 - Need large effective area or light guide to make ~5x5mm² pads
 - Need gated readout because of high dark count (<~MHz)
 - Radiation hardness?

Barrel – endcap transition region

Need to minimize dead space at the transition region

- TOP needs PMT region at bar end.→ can be covered with the aerogel RICH
- To detect Cherenkov light emitted to the outside, use planar *mirrors*

MC study: efficiency recovered

38

Key points of ECL upgrade

Removal of ACC helps. No big worry

40

•Waveform sampling & fitting
•CsI(TI) → pure CsI for end caps

Partial replacement with pure CsI:

•768 (+green)

•480 (red only)

backward

forward

•1152 (+blue)

•2112 (+pink)

SuperKEKB open collaboration meeting

Pure CsI crystals

	Price of crystal	Light yield	Uniformity	Radiation hardness
Kharkov	6k\$ (2004)	80 p.e./MeV	<10%	Good
SICCAS	4k\$ (2006)	30 p.e./MeV	10-20%	Good
Saint Gobain	8k\$ (2006)	130 p.e/MeV	<10%	Good

MC study of the impact of using pure CsI on the sample of fully reconstructed B mesons:

- Full backward and forward endcap (2112 crystals): eff +5%, background -7%
- Visible effect if >1000 replaced crystals

Need MC studies of the effect also on other channels.

Pure CsI – impact 2

(*) Reduce material not taken into account for this study

SuperKEKB open collaboration meeting

Scintillator KLM set up

- Two independent (x and y) layers in one superlayer made of orthogonal strips with WLS read out
- Photodetector = avalanche photodiode in Geiger mode (GAPD, SiPM)
- ~120 strips in one 90° sector (max L=280cm, w=25mm)
- ~30000 read out channels
- Geometrical acceptance > 99%

<u>Mirror</u> 3M (above groove & at fiber end)

Other issues

46

- \bullet Toy MC results considering ${\bigtriangleup t}$ resolution and geometrical acceptance.
- Geometrical acceptance is assumed to be same as in the current Belle detector.

Configurations & Assumptions

Detecting capability: Muon only. Charged tracks. Charged tracks + photon

Assuming an uniform 95% detecting efficiency for now

page, 10

First Order Study: Geant4 Simulations

Minimum hypothesis & target: A forward <u>TRACKER</u> for improving detector acceptance. (No direct contribution to main analysis, but as a veto detector) Reject the prompt tracks from IP for the full-reconstruction analyses. No space so far, so it's better to demonstrate the capability before any other works: ~4cm

Powerful if it works

50

Still to be studied...

- Readout pitch of SVD outer layers
- If 10% hole in TOP is acceptable or not
- Impact of partial upgrade with pure CsI more modes
- Very forward detector with realistic configuration, realistic background conditions
- Tau decays more modes
- K_L reconstruction efficiency (with single layer)

"effective" background with new hardware

	Method	Reduction factor	bkg
SVD	Shorter t _p	50/800 = 1/16	0 ~ 1
CDC	Smaller cell	<2/3	4 ~ 13 (*)
PID	Brand new device	Good enough	0 ~ 1
B-ECL	Waveform fitting	1/7	1 ~ 2
E-ECL	Pure CsI (shorter τ)	1/200	0 ~ 1
KLM	Faster detector, finer segment	Under control	0 ~ 1

(*) Covered by software for CDC

 \rightarrow We know how to handle high backgrounds

Overall schedule (back calculation)

	year month	1 2 3 4	2006 2009 2009 2009 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8	9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
SVD outer	Geometrical Boundary Fix Mechanical Design Fix Technical Design Fix Construction & Test	by Feb.01, 2009 by Dec.31, 2009	Start En	d-ring production
SVD inner	Geometrical Boundary Fix Mechanical Design Fix Technical Design Fix Construction & Test	Detector	Decision	for what
SVD CDC	Installation Geometrical Design Fix Mechanical Design Fix		Date	
ТОР	Technical Design Fix Construction & Test Installation Geometrical Design Fix	SVD	Mid 2009	End-ring and beam pipe
	Mechanical Design Fix Technical Design Fix Construction & Test Installation	CDC	Sep. 2009	Chamber production (end plate)
A-RICH	Geometrical Design Fix Mechanical Design Fix Technical Design Fix Construction & Test Assemble	ТОР	May 2009	Quartz bar production
ECL	Installation Geometrical Design Fix Mechanical Design Fix Technical Design Fix	ARICH	Mar. 2009	Photon detector production
KLM EndCa	Construction & Test Assemble Installation ap Geometrical Design Fix	ECL	Mar. 2009	Crystal and PMT
KLM Barrel	Technical Design Fix Construction & Test Installation Geometrical Design Fix	E-KLM	Sep. 2009	Sciptillator modulo production
	Technical Design Fix Construction & Test Installation	B-KLM	Mid 2010	
STR	Barrel Design Fix Endcap Design Fix Construction & Test Installation (KLM) Installation (Endcap) Installation (Barrel) Global Cosmic Ray Test Roll in Beam On	by Apr. 20.2010 A 6 months by Apr	in March 2009 (E	ECL, A-RICH) to be ready in early 2013
	year month	1 2 3 4	2008 2009 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8	2010 2011 2012 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6

54

Overall schedule

Summary

- Belle+KEKB have proven to be an excellent tool for flavour physics; reliable long term operation, constant improvements of the performance.
- Major upgrade in 2009-12 \rightarrow Super B factory
- More details on components and current options later today and tomorrow.
- Essentially a new project, all components have to be replaced, plans exist, nothing is frozen...
- If you have a bright idea what to add/change, do not miss the chance to propose it!
- Ongoing detector R+D has to be wrapped up soon...

58

SVD possible options

Option 0 Option 1 Option 2 'Cheap and Nasty' 'Super' 'Baseline' 1.5cm BP 1.5cm BP 1cm BP 2lyr APV + 2lyr VA Pixel + 4lyr APV 6lyr APV Readout dead time Pipelined; dead time free, no peak (27→)15%@10kHz hold L1 30% better IP K_S vtx +20~30%, Hold dead time = resolution slow tracking +20% 10%@33kHz L0 Not in time Good performance Otherwise fine in in the first few performance years No gain in K_S vtx Option 1 +1.5M\$ 0.3M\$ 4M\$ or 5M\$ Superice open conavoration meeting 1101CH 17, 2000 FCLCE INIZALI, LJUDIJALIA

SVD Schedule (first half)

		Calender Year	2007		20	800			2	009	
		I:Jan-Mar, II:Apr-Jun	IV	I	II	III	IV	I	II	III	IV
Items		III:Aug-Oct, IV:Nov-Dec									
Overall											
	MC study	~12/31/2008									
	Decide Outer Radius	2/1/2009									
	(CDC design start)	3/1/2009									
	Decide Inner radius&Sensor Opt	6/30/2009				1					
	EndRing design&Production	7/1/2009-6/30/2011				1					
	Beampipe design&production	11/1/2009-11/15/2011									
Innerlayer	Decide Inner radius&Sensor Opt	6/30/2009									
SOIPIX/CAPS	R&D	~6/30/2010									
	Production	4/1/2009-2/28/2011									
	Assemble	3/1-5/31/2011									
	Test(sensor module)	6/1-6/30/2011									
	Mounting	7/1-7/31/2011									
Striplet+APV25	R&D	~3/31/2010									
	Production	4/1/2010-3/31/2011									
	Assemble	4/1-6/30/2011									
	Mounting	7/1-7/31/2011				1					
SVD3(DSSD+APV25	Assemble	5/1-7/14/2011									
	Mounting	7/15-7/31/2011									
	Test(Total Innerlayer)	8/1-8/31/2011									
OuterLayer	Decide OuterLayer technology Option	12/31/2009									
DSSD by India/Korea	DSSD R&D(incl. Test production)	~12/31/2010									
-	DSSD Production	8/1/2009-2/28/2011									
Other company	DSSD Test production	4/1/2010-12/31/2010				1					
	DSSD Evaluation	1/1/2010-2/28/2010									
	DSSD Production	3/1/2010-2/28/2011									
APV25 readout	Chip delivery	12/1/2009-1/31/2011				1					
Develop ASIC	FE chip R&D(incl. Test production)	~2/28/2010									
	Production	3/1/2009-2/28/2011									
	Ladder Assemble	3/1-8/31/2011				1					
	Mounting	9/1-10/31/2011									
	Test(Total Outerlayer)	11/1-11/15/2011									
Comissioning		Ī				1	4.10				40
	SVD Assemble(+Beampipe)	11/15-11/30/2011			0-5	stai	rt-I	n−e	ICI:	21	J12
	System test in CleanRoom	12/1/2011-2/28/2012	+			1				1	1
	Install	3/1-5/30/2012									
	Cosmic test	6/1-7/31/2012	+								
	Boll-in	8/1/2012				De	SIO	nc	lec	ISI	on

Small cell chamber + new readout (ASD)

Current chamber cannot last for long (dark current increases even without beam)

Background reduction into $\sim 2/3$

Chamber 1.8M\$ Frontend electronics 1.5M\$ (Backend 0.3M\$) Total 3.3M\$

Inner/outer radii can be adjusted to other detectors (SVD/PID)

No other option

60

S. Uno

CDC Schedule

	CY	2009				2010				2011				2012			
Items		Ι	II	III	IV												
Fixing outer radious	2009/3/1																
Wire configuration design	2009/3/1-2009/3/31																
Final check using simulation	2009/3/1-2009/4/30																
Endplate design	2009/3/1-2009/4/30																
Endplate bidding	2009/6/1																
Endplate machining	2009/7/1-2009/12/31																
Drilling	2010/1/1-2010/6/30																
Assembling of Endplates	2010/7/1-2010/7/31																
Wire stringing	2010/8/1-2011/3/31																
Tension measurement	2011/4/1-2011/4/30																
Insertion of outer cylinder	2011/5/1-2011/5/2																
Insertion of inner part	2011/5/3-2011/5/4																
Tension measurement	2011/5/5-2011/5/31																
Gas leak test	2011/6/1-2011/8/31																
HV cabling	2011/9/1-2011/9/10																
HV test	2011/9/11-2011/9/30																
Signal cabling	2011/10/1-2011/10/30																
Preamp + Cooling water	2011/11/1-2011/11/31																
Cosmic ray Test at clean room	2011/12/1-2012/1/31																
Installation of CDC & Test	2012/2/1-2012/2/28																
Cosmic ray test on 1.5Tesla	2012/4/1-2012/6/30																
Roll in	2012/8/1																
Beam on	2012/10/1																

To start in Oct. 2012

Inner and outer radii should be determined by March 2009

61

K. Inami TOP Schedule (first half)

62

na

A-RICH Schedule (first half)

1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 12 1 1 1 1 <t< th=""><th>08</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>2009</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>2010</th><th></th><th></th><th></th></t<>	08										2009												2010			
beam test photon detector production photon detector production photon detector production photon detector production photon detector feet in the second pho	1 2 3	3 4	5	6	7	8	9	10	11	12	1	2	2 3	4	5	6	7	8	9	10	- 11	12	1	2	3 4	1 5
D evaluation bidding photon detector decision bidding photon detector test photon dete	bear	n test		_			\rightarrow			_	photo	n de	tector	r produ	iction											
ASIC SA01 delivery ASIC SA01 delivery ASIC SA01 test ASIC SA02 design ASIC	PD evaluatio	n		-				hotor	detec	tor	decis	ion														
ASIC SA01 delivery ASIC SA01 test ASIC SA01 test ASIC SA02 design ASIC SA02 production & test ASIC SA02 design ASIC SA02 desi	PD evaluatio						ľ	motor	bi	ddin	g	phot	on de	tector	test										-	
ASIC SA01 delivery																										
ASIC SAU delivery ASIC SAU test ASIC SAU delivery ASIC SAU test ASIC SAU delivery ASIC SAU test ASIC SAU design ASIC SAU test ASIC SAU design				_			\rightarrow			_				<u> </u>											_	
ASIC SA01 test ASIC SA02 design ASIC SA02 design ASIC SA02 production & test ASIC ship production ASIC SA02 production & test ASIC ship production ASIC ship	ASIC SAU	1 deliv	ery	_			+			_															_	
ASIC SA02 design ASIC SA02 design ASIC SA02 design ASIC SA02 production & test ASIC chip production ASIC chip prod	ASIO	C SA01	test				-																			
ASIC SA02 design ASIC solution																										
ASIC chip test ASIC c				_			A	ASIC :	SA02 d	esig	n														_	
ASIC SA02 production & test ASIC SA02 production & test ASIC solution AS										_									biddir	20			ASIC	chin test		
ASIC SA02 production & test ASIC chip production (ASIC chip production) (ASIC chip producti		<u> </u>		-			-							<u> </u>					biddii	g			ASIO	chip test		
Image: state of the state											ASIC	SA0	2 proc	luctior	n & tes	st				ASIC	chip p	orodu	ction			
Image: Second							\rightarrow																			
readout board / readout / readout board / readout / readout board / readout /				-			+			_				modu	la daa	irro(U	V/rook	dout /	biog	o ord)					_	
hanical structure design							+							mout	le des	ign(II	v/reat	uout/	Jids I	soard)					read	out boar
Image: state of the state																										
Image: start in the start							\rightarrow			_																
hanical structure design				_			-+			_															LIV.	weters a
hanical structure design							-			_																system p
Image: state of the state																										
backend readout design																										
hanical structure design				_			\rightarrow			_	backe	end r	eadou	t desig	(n											
hanical structure design							-			-															back	end read
Image: state in the state																										
hanical structure design																										
hanical structure design				_			\rightarrow			_															_	
hanical structure design		-		-			-			_															-	
hanical structure design aerogel design study 1/12 mockup design 1/12 mockup production 0-start-in-Oct-2012 test & design feedback		1					+																		-	
1/12 mockup design 1/12 mockup production 1/12 mockup production 1/12 mockup production 0-start-in-Oct2012 test & design feedback	hanical stru	icture (design																				aeroge	el design	study	
0-start-in-Oct. 2012					(10		يلب							<u> </u>												
0-start-in-Oct. 2012		+		1/	12 m	lockup	desi	Ign																		
o-start-in-Oct. 2012											1/12	moc	kup pr	oducti	on											
o-start-in-Oct. 2012								_																		
	īo-st	art	_in	-0	C		20	1.2	2	_					1	test (& desig	gn fee	edbac	k						
	<u></u>	gan e		4.2.4	r sa <u>a</u> rsa					_				1	_								1		1	
							00	rie	ior		of	n	h	htc	n	d	ate	oct		r ir			to	hor	20	108
Decision of photon detector in October 2008								512				Υ	Л		ЛТ_	u					T					500
Decision of photon detector in October 2008																										
Decision of photon detector in October 2008							—																			
Decision of photon detector in October 2008										-																
Decision of photon detector in October 2008									<u>с</u>	1		1			П		1	п			<u>г</u>	1			<u></u> Г	

March 19, MBOFE CELEIII SIIa Dayn r exting CELEIII, Ljubljana

Time-of-flight measurement

Time-of-flight with Cherenkov photons from aerogel radiator and PMT window

\rightarrow can positively identify kaons bellow Cherenkov threshold in aerogel (1.5 GeV)

\rightarrow a fast photon detector is an advantage

Beam tests

\rightarrow This photon detector does not work in magnetic field...

Peter Križan, Ljubljana

Beam tests of Burle MCP PMT

Tested in pion beam combination with multi-anode PMTs. →Stable operation, very good performance

Results:

- • σ_9 ~13 mrad (single cluster)
- number of clusters per track N~ 4.5
- $\sigma_9 \sim 6$ mrad (per track)
- • \rightarrow ~ 4 $\sigma \pi/K$ separation at 4 GeV/c

To do list:

 •improve collection efficiency and active area fraction → higher
 number of det. photons → done
 •aging study

MCP-PMT timing properties

Bench tests with pico-second laser

Time resolution as a function of the number of detected photons \rightarrow

Additional bench tests needed: study detailed timing properties and cross-talk.

Determine their influence on the

- position resolution and
- time resolution

SuperKEKB open collaboration

Photon detector candidate: H(A)PD

HAPD bench tests

ADC distribution of HAPD

- With Maximum bias voltage
- -8.5 kV high voltage
- 1 p.e. level light from LED

Clear separation between pedestal and 1 p.e. peak!!

channel	bias [V] 1	bombard- ment gain*	total gain	avalanche gain	S/N
chipA-22	331	1600	32000	20	8.8
chipB-29	331	1750	26000	15	8.4
chipC-22	337	1600	60000	37	15.1
chipD-22	343	1650	67000	42	13.4
*=meas	sured b	y Hamamat	su		

- All the four chips show good performance.
- avalanche gain depends on (max.) bias voltage.

SiPMs as photon detectors?

SiPM is an array of APDs operating in Geiger mode. Characteristics:

- low operation voltage ~ 10-100 V
- gain ~ 10⁶
- peak PDE up to 65%(@400nm)
 - PDE = QE x ε_{geiger} x ε_{geo}
- ε_{geo} dead space between the cells
- time resolution ~ 100 ps
- works in high magnetic field
- dark counts ~ few 100 kHz/mm²
- radiation damage (p,n)

Cosmic ray test scintillation counter MWPC telescope

Results are very promissing.

Photon detectors for the aerogel RICH, summary

BURLE 85011 MPC PMT

- Best understood, beam and bench tested, excellent timing
- Open issues: ageing, read-out for fast timing

Multichannel H(A)PD – R+D with Hamamatsu

- Finally working samples, good progress in read-out electronics
- Open issues: more tests needed, performance in the beam, ageing

SiPM (G-APD)

- Very good first results
- Open issues: radiation hardness

TOP - dispersion

Expected performance with: bi-alkali photocathode: <4σ π/K separation at 4GeV/c (← chromatic dispersion)

with GaAsP photocathode: > $4\sigma \pi/K$ separation at 4GeV/c

option	K/pi separation performance at 70 deg, 4GeV/c	critical issues
3 readout + multi-alkali	2.8 sigma	(Make prototype)
3 readout + GaAsP	3.5 sigma	MCP production MCP lifetime
Focusing + multi-alkali	2.5 sigma \rightarrow 4.0 sigma if CE=60%	MCP lifetime
Focusing + GaAsP	4.2 sigma	MCP production MCP lifetime

76

Focusing DIRC tests at SLAC

Photon detectors: flat pannel PMTs and Burle MCP PMTs, part of it read-out by Gary Varner's wave sampling read-out

March 19, 2008

SuperKEKB open collaboration meeting

Peter Križan, Ljubljana

Buffered Large Analog Bandwidth (BLAB1)

Two Rows of 512 cells

1.4mV

200

180

160

140

120

- Custom Analog-to-Digital (ADC) ٠
- 65 k deep sampling ٠
- High speed sampling ٠
- Low power consumption ٠
- 10 real bits of dynamic range ٠

March 19, 2008

0

-2

-4 -6

-18

0

attenuation (dB) -8 -10-12 -14 -16

SuperKEKB open collaboration meeting

Measured Noise

GCK w/

Entries

Mean

RMS

Mean

Sigma

Constan

CMPBIAS

200kohm

1024

1.452

0.1373

 $\textbf{181.6} \pm \textbf{7.6}$

 1.446 ± 0.004

 0.1316 ± 0.0037

Typical single p.e. signal [Burle]

March 19, 2008

SuperKEKB open collaboration meeting

Beam test data looks good, being analyzed

Plan for the next beam test: equip 7 MCP PMTs with BLAB read-out

PID summary

Aerogel RICH:

- A lot of progress in understanding the photon detectors; more beam/bench tests in spring → decision
- Read-out: still a lot to be done, final choice depends on photon detector (timing or not)

TOP:

- Photon detector with GaAsP photocathode: excellent Q.E. and timing, dark count rate high.
- Plan: study ageing.

Focusing DIRC:

• Promissing beam tests at SLAC, progress in read-out electronics interesting for other devices as well.

More detailed study is going on

Radiation Hardness of ECL Components

I. Nakamura

\Box to γ rays

- dose as of Now ~ 100–400 rad
- Crystals checked @ BINP

crystal	dose (rad)	# photons
	100	~0.95
CsI(11)	1000	~0.90
CsI(Pure)	100	1.0
	10000	0.9–0.8

PD checked @ TIT

dose (rad)	$\Delta I(\mathbf{n}\mathbf{A})$	$C_{\rm j}/C_{\rm j0}$	G/G_0
190	~ 0	1.0	1.00
610	~ 0.2	1.0	1.00
6.8k	~ 1	1.0	1.00
70k	~ 6	1.0	0.99

- \Box γ rays no problem
- some degradation with Neutrons
- Rad. hardness of crystals depend on producer

to Neutrons

- dose as of Now ~ 10^{10} – 10^{11} /cm²
- Test performed @ reactor YAYOI

• PD

dose (/cm ²)	$\Delta I(nA)$	$C_{\rm j}/C_{\rm j0}$	G/G_0
1×10^{11}	~ 100	1	1.00
1×10^{12}	~ 1000	1	0.98
1×10^{13}	~ 10000	1	0.93

• Crystals

crystal	dose (/cm ²)	# photons
CsI(Tl)*	1×10^{12}	~0.7
CsI(Pure)	1×10^{12}	1.0-0.95

* small crystal doesn't show degradation

March 12, 2000

CsI read-out status

Supernerse open conaboration metang

I CLEE TAILEURY EJUDIJUNU

Possible options for ECL

Free from Fastbus malfunctions Dead time reduction by factor 3 No background reduction

> Copper 5k\$*100 AMT3 Finesse 200*0.7k\$ Crate 6*5k\$ (Total 0.7 M\$)

Option 1 New readout system

Dead time free BKG reduction by factor 7

Shaper FADC 5k\$*550 (Copper 5k\$*80) (DSP board 1k\$*150) (Crate 5k\$*5) Total 2.8 M\$ Option 2 Pure CsI in end caps

BKG reduction by factor 200

Option 1 + Crystal ~5k\$/ch PMT 1k\$/ch Frontend 1k\$/ch Total 6.2M\$/480ch to 17.6M\$/2112ch

 $\mathsf{PICIUI}_{\mathcal{I}}$

Superice open conavoration meeting

г стег книган, сјиријана

85

ECL Schedule

To start in Oct. 2012

Design decision in October 2008 for crystal and PMT production

KLM Schedule

To start in Oct. 2012

Design decision by March 2009 for end caps, by early 2010 for barrel

87

KLM Possible options

K_L Veto Efficiency Dependence

Muons from $ee \rightarrow \mu\mu$ are seen with proper time, proper position

Simulation study

Preliminary Geometry

Regardless of the space, we prepared a geant4 module under the framework of Super Belle simulations. Assuming a <u>silicon pixel detector</u> with large cells: <u>2mm x 2mm</u>. Sensors only at this moment:

ILC forward detectors?

ILC very forward detectors

Role of ILC-forward detectors

- Measurement of luminosity
- Extension of angular coverage
 - > Measurement of missing energy
- Monitor of the beam profile at IP

ILC forward detectors

- LumiCal, BeamCal, Pair monitor, GamCal
- Common R&D elements in all the detector concepts.
- \rightarrow R&D is performed by the ILC-FCAL collaboration.
 - > Organization by14 institutes from 11 countries.

The very-forward detectors are shown on each purpose. (GamCal is not presented in this talk.)

