

Rare decays at Belle

Peter Križan University of Ljubljana and J. Stefan Institute

Oct. 18, 2006

Peter Križan, Ljubljana

Accumulated data sample >600 M BB-pairs

Oct. 18, 2006

Seminar, SLAC

Peter Križan, Ljubljana

Contents

FCNC b \rightarrow s decays

- •b \rightarrow s γ : CP violation
- •Measurement of A_{fb} vs q² in $B \rightarrow K^* I^+ I^-$ decays

Decays with >1 neutrino •Purely leptonic decay: $B^- \rightarrow \tau^- \nu_{\tau}$ • $B \rightarrow K^{(*)} \nu \nu$

Upgrade plans

•PID in the forward region

Oct. 18, 2006

Why FCNC decays?

Flavour changing neutral current (FCNC) processes (like $b \rightarrow s, b \rightarrow d$) are fobidden at the tree level in the Standard Model. Proceed only at low rate via higher-order loop diagrams. Ideal place to search for new physics.

$B \rightarrow X_{s\gamma} CP$ Asymmetry

- Theoretically clean.
- Standard Model "~Zero".
 - γ is polarized, and the final state is almost flavor specific.
 - − Helicity flip of γ suppressed by $\sim m_s/m_b$ →S ~ 0.02
 - QCD corrections → S remains small

(Grinstein, Pirjol, PRD 73 014013;

Matsumori, Sanda, PRD 73 014013)

• Time dependent CPV requires vertex reconstruction with $K_S \rightarrow \pi^+ \pi^-$

Vertex recon. eff. at Belle 51% (SVD2), 40% (SVD1) $B^0 \rightarrow K_S \pi^0 \gamma$ time dependent CPV

 $M(K_{S}\pi^{0}) < 1.8 GeV/c^{2}$

Atwood, Gershon, Hazumi, Soni, PRD71, 076003 (2005)

NP effect is independent of the resonance structure.

Belle: data sample 535MBB

• Three M(K_S π^{0}) regions(MR1:0.8-1.0GeV/c2, MR2:1.3-1.55, MR3: rest with M<1.8GeV/c²)

Results:

Prospects:	5ab-1	▶50ab ⁻¹
$A_{cp}^{mix}(B \rightarrow K^* \gamma, K^* \rightarrow K_S \pi^0)$	0.14	0.04
$A_{cp}^{dir}(B \rightarrow X_{s}\gamma)$	0.011	0.005

Add more modes: $B \rightarrow K_S \phi \gamma$ (with angular analysis), higher K resonances, $B \rightarrow K_S \eta \gamma$ (recent observation by BaBar),...

T. Goto, Y.Okada, Y.Shimizu, T.Shindou, M.Tanaka hep-ph/0306093, also in SuperKEKB LoI

Oct. 18, 2006

Important for further searches for the physics beyond SM

$$\frac{d\Gamma(b \to s\ell^+\ell^-)}{d\hat{s}} = \left(\frac{\alpha_{em}}{4\pi}\right)^2 \frac{G_F^2 m_b^5 \left|V_{ts}^* V_{tb}\right|^2}{48\pi^3} (1-\hat{s})^2 \\ \times \left[(1+2\hat{s}) \left(\left|C_9^{\text{eff}}\right|^2 + \left|C_{10}^{\text{eff}}\right|^2\right) + 4 \left(1+\frac{2}{\hat{s}}\right) \left|C_7^{\text{eff}}\right|^2 + 12 \operatorname{Re}\left(C_7^{\text{eff}} C_9^{\text{eff}}\right) \right] \\ \mathbf{C_i: Wilson coefficients}}$$

$$P(q^{2}, \cos \theta; A_{9}/A_{7}, A_{10}/A_{7})$$

$$= f_{sig}\epsilon_{sig}(q^{2}, \cos \theta) \frac{d^{2}\Gamma}{dq^{2}d\cos\theta}(q^{2}, \cos \theta)/N_{sig}$$

$$+ f_{cfcf}\epsilon_{cfcf}(q^{2}, \cos \theta) \frac{d^{2}\Gamma}{dq^{2}d\cos\theta}(q^{2}, \cos \theta)/N_{cfcf}$$

$$+ f_{ifcf}\epsilon_{ifcf}(q^{2}, \cos \theta) \frac{d^{2}\Gamma}{dq^{2}d\cos\theta}(q^{2}, -\cos \theta)/N_{ifcf}$$

$$+ f_{X_{s}\ell\ell}\mathcal{P}_{X_{s}\ell\ell}(q^{2}, \cos \theta)$$

$$+ f_{dilep}\left\{(1 - f_{K^{*}\ell h})\mathcal{P}_{dilep}(q^{2}, \cos \theta)$$

$$+ f_{K^{*}\ell h}\mathcal{P}_{K^{*}hh}(q^{2}, \cos \theta) + f_{\psi}\mathcal{P}_{\psi}(q^{2}, \cos \theta), \quad (6)$$

Treat q², cos(θ) dependence of bkgs.

Unbinned fit to the variables q^2 (di-lepton invariant mass) and $cos(\theta)$ for the $B \rightarrow K^* I I$ data.

Fit parameters A_9/A_7 and A_{10}/A_7 (A_i = leading term in C_i)

113±13 events

Control sample $B \rightarrow KII$

Constraints on Wilson coefficients from $A_{FB}(B \rightarrow K^* \mid I)(q^2)$

Observed integrated A_{FB} rules out some radical New Physics Models with incorrect signs/magnitudes of C_9 and C_{10} (red and pink curves)

Results of the unbinned fit to q^2 and $cos(\theta)$ distributions for ratios of Wilson coefficients

	negative A_7	positive A_7	
A_9/A_7	$-15.3^{+3.4}_{-4.8}\pm1.1$	$-16.3^{+3.7}_{-5.7}\pm1.4$	
A_{10}/A_{7}	$10.3^{+5.2}_{-3.5}\pm1.8$	$11.1^{+6.0}_{-3.9} \pm 2.4$	

Peter Križan, Ljubljana

at 95% C.L.

Precision with $5ab^{-1}$ $\delta C_9 \sim 11\%$ $\delta C_{10} \sim 14\%$ $\delta q_0^2/q_0^2 \sim 11\%$

A_{FB} zero-crossing q₀² will be determined with 5% error with 50ab⁻¹

Purely leptonic decay $B \rightarrow \tau v$

- Proceed via W annihilation in the SM.
- Branching fraction

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Provide information of $f_B |V_{ub}|$
 - $|V_{ub}| \text{ from } B \rightarrow X_u | v \implies f_B$
 - $Br(B \rightarrow \tau \nu) / \Delta m_d$ $|V_{ub}| / |V_{td}|$
- Expected branching fraction $|V_{ub}| = (4.39 \pm 0.33) \times 10^{-3} (HFAG)$ $f_B = (216 \pm 22) \text{ MeV (lattice)}$ $BF(B \rightarrow \tau \nu_{\tau}) = (1.59 \pm 0.40) \times 10^{-4}$

cf) Lattice

Full Reconstruction Method

- Fully reconstruct one of the B's to
 - Tag B flavor/charge
 - Determine B momentum
 - Exclude decay products of one B from further analysis

Offline B meson beam!

Powerful tool for B decays with neutrinos

τ decay modes

$$\tau^- \to \mu^- \nu \overline{\nu}, e^- \nu \overline{\nu}$$

$$\pi^- \to \pi^- \nu, \pi^- \pi^0 \nu, \pi^- \pi^+ \pi^- \nu$$

- Cover 81% of τ decays
- Efficiency 15.8%

Event selection

 Main discriminant: extra neutral ECL energy

Fit to $E_{residual} \rightarrow 17.2^{+5.3}_{-4.7}$ signal events.

 \rightarrow 3.5^o significance including systematics

Submitted to PRL, hep-ex/0604018

Consistency Check with B \rightarrow D*I $_{\rm V}$

• Extra neutral energy E_{ECL} validation with double-tagged sample (control sample):

	$N_{\rm obs}$	$N_{\rm s}$	$N_{\rm b}$	Σ
$\mu^- \bar{\nu}_\mu \nu_\tau$	13	$5.6^{+3.1}_{-2.8}$	$8.8^{+0.1}_{-0.1}$	2.7σ
$e^- \bar{\nu}_e \nu_{\tau}$	12	$4.1^{+3.3}_{-2.6}$	$9.0^{+0.1}_{-0.1}$	1.8σ
$\pi^- \nu_{\tau}$	9	$3.8^{+2.7}_{-2.1}$	$3.9^{+0.1}_{-0.1}$	2.4σ
$\pi^-\pi^0\nu_\tau$	11	$5.4^{+3.9}_{-3.3}$	$5.4^{+0.6}_{-0.6}$	1.7σ
$\pi^-\pi^+\pi^-\nu_\tau$	9	$3.0^{+3.5}_{-2.5}$	$4.8^{+0.4}_{-0.4}$	1.1σ
Combined	54	$17.2^{+5.3}_{-4.7}$	$32.0^{+0.7}_{-0.7}$	4.6σ

(stat sign. only)

For all modes, the background is fitted with a 2nd order polynomial plus a small Gaussian peaking component.

MC studies: small peaking bkg in the $\tau \rightarrow \pi \pi^0 \nu$ and $\tau \rightarrow \pi \pi \pi^0 \nu$ modes.

 $B \boldsymbol{\rightarrow} \tau \, \nu_\tau$

$$BF(B^+ \to \tau^+ \nu_{\tau}) = (1.79^{+0.56+0.46}_{-0.49-0.51}) \times 10^{-4}$$

 \rightarrow Product of B meson decay constant f_B and CKM matrix element $|V_{ub}|$

$$f_B \times V_{ub} = (10.1^{+1.6+1.3}_{-1.4-1.4}) \times 10^{-4} \, GeV$$

Using $|V_{ub}| = (4.39 \pm 0.33) \times 10^{-3}$ from HFAG

$$f_B = 229^{+36+34}_{-31-37} MeV$$

$$f_B = 13\%(exp.) + 8\%(V_{ub})$$

First measurement of f_B!

 $f_B = (216 \pm 22)$ MeV (an unquenched lattice calc.) [HPQCD, Phys. Rev. Lett. 95, 212001 (2005)] Impact of $B^- \rightarrow \tau^- \nu_{\tau}$

•Use BF(B $\rightarrow \tau v_{\tau}$) with $\Delta m_d \rightarrow \text{constraint}$ in the (ρ,η) plane

Oct. 18, 2006

Seminar, SLAC

Peter Križan, Ljubljana

Charged Higgs limits from $B^- \rightarrow \tau^- \nu_{\tau}$

If the theoretical prediction is taken for f_B \rightarrow limit on charged Higgs mass vs. tan β

 $B \rightarrow \tau \nu$ prospects

- Expected precision at Super-B
 - -13% at 5 ab⁻¹
 - 7% at 50 ab⁻¹

- Search with $D^{(*)} \mid v$ tag will help.
 - → BaBar 232M BB PRD 73 (2006) 057101
 - Tag eff $\sim 1.75 \times 10^{-3}$
 - Signal selection eff. \sim 31%
 - Similar S/N to Belle (full recon. sample) $Br(B \rightarrow \tau \nu) < 2.8 \times 10^{-4} (90\% CL)$

Future Prospects: $B \rightarrow \tau v$

95.5%C.L. exclusion boundaries

(for $BF_{obs} = BF_{SM}$)

 $B \rightarrow K^{(*)}vv$ is a particularly interesting and challenging mode (with $B \rightarrow \tau v$ as a small background), theoretically clean

Experimental signature: $B \rightarrow K + nothing$

The "nothing" can also be light dark matter with mass of order 1 GeV. Direct dark-matter searches cannot see the M<10 GeV region.

SM prediction for $B^+ \rightarrow K^+ vv$: (3.8^{+1.2}_{-0.6}) x 10⁻⁶

 $B \rightarrow \tau v$ analysis is a proof that such a one prong decay can be studied at a B factory

Present limits:

•BaBar (89M BB): $BF(B^+ \rightarrow K^+ vv) < 52 \times 10^{-6}$ PRL 94 (2005)101801

•Belle (277M BB): $BF(B^+ \rightarrow K^+ vv) < 36 \times 10^{-6}$ hep-ex/0507034

SM: $BF(B \rightarrow K^* vv) \sim 1.3 \times 10^{-5}$ (Buchalla, Hiller, Isidori) PRD 63, 014015

BSM: New particles in the loop

Other weakly coupled particles: light dark matter

Motivation for $B \rightarrow K^* vv$ - 2

The experimental signature is $B \rightarrow K + Nothing$

The "nothing" can also be *light dark matter* (mass of order (1 GeV))

C. Bird et al PRL 93 201803

Direct dark-matter searches cannot see M<10 GeV region

Oct. 18, 2006

Seminar, SLAC

Peter Križan, Ljubljana

Event display for a $B \rightarrow K^* v v$ candidate due to an identified background $(B \rightarrow K^* \gamma)$

Oct. 18, 2006

Peter Križan, Ljubljana

 $B^- \rightarrow K^- \nu \nu \rho rospects$

MC extrapolation to 50 ab⁻¹

5 σ Observation of $B^{\pm} \rightarrow K^{\pm} \nu \nu$

Summary

- Radiative, electroweak and tauonic B decays are of great importance to probe new physics.
- We are starting to measure $B \rightarrow \tau v$, Kvv, $D\tau v$, $A_{FB}(K*II)$, $A_{CP}(K\pi^0\gamma)$ etc. at the current B factories. \rightarrow Hot topics in the coming years !
- For precise measurements, we need a Super-B factory!
- \rightarrow Observe K^(*) vv, zero crossing in A_{FB}, D^(*) τ v
- \rightarrow Expected precision (5ab⁻¹ \rightarrow 50ab⁻¹);
 - Br(τν): 13%→7%
 - Br(D^(*)τν): 7.9%→2.5%
 - q_0^2 of A_{FB}(K*II): 11%→5%
 - A_{CP}(Kπ⁰γ) tCPV: 0.14→0.04

 \rightarrow Substaintial upgrade of the detector is mandatory

Belle Upgrade for Super-B

Barrel: TOP or focusing DIRC

Endcap: proximity focusing RICH

improve K/ π separation in the forward (high mom.) region for few-body decays of B mesons

good K/ π separation for b -> d γ , b -> s γ

improve purity in fully reconstructed B decays

low momentum (<1GeV/c) $e/\mu/\pi$ separation (B ->KII)

keep high the efficiency for tagging kaons

Oct. 18, 2006

Seminar, SLAC

Peter Križan, Ljubljana

Proximity focusing RICH in the forward region

K/π separation at 4 GeV/c $\theta_c(\pi) \sim 308 \text{ mrad} (n = 1.05)$ $\theta_c(\pi) - \theta_c(K) \sim 23 \text{ mrad}$

 $d\theta_c(meas.) = \sigma_0 \sim 13 mrad \\ With 20mm thick aerogel and \\ 6mm PMT pad size$

 \rightarrow 6 σ separation with N_{pe}~10

Beam test: Cherenkov angle resolution and number of photons

Beam test results with 2cm thick aerogel tiles: excellent, >4 σ K/ π separation NIM A521(2004)367 (b) Number of hits (a) Cherenkov angle Entries Entries 400 900 <0> = 0.322 rad $<N_{ne}> = 6.2$ 350 $\sigma_0 = 14.8 \text{ mrad}$ 800 300 700 600 250 500 200 400 150 300 100 200 50 100 0 θ 0.2 0.40.6 10 20 θ (rad) N but: Number of photons has to be increased. \rightarrow

Oct. 18, 2006

Peter Križan, Ljubljana

How to increase the number of photons?

Radiator with multiple refractive indices

How to increase the number of photons without degrading the resolution?

measure overlaping rings

Beam tests

Photon detector: array of 16 H8500 PMTs

Oct. 18, 2006

Seminar

Clear rings, little background

Focusing configuration – n₂-n₁ variation

- upstream aerogel: d=11mm, n=1.045
- downstream aerogel layer: vary refractive index
- measured resolution in good agreement with prediction
- wide minimum allows some tolerance in aerogel production

Multilayer extensions

Photon detector candidate: MCP-PMT^{*}

BURLE 85011 MCP-PMT:

- multi-anode PMT with two MCP steps
- ${\scriptstyle \bullet}~25~\mu m$ pores
- bialkali photocathode
- gain ~ 0.6 x 10⁶
- $\hfill \hfill \hfill$
- box dimensions ~ 71mm square
- . 64(8x8) anode pads
- pitch ~ 6.45mm, gap ~ 0.5mm
- active area fraction ~ 52%

Tested in combination with multi-anode PMTs

• $\sigma_9 \sim 13 \text{ mrad}$ (single cluster) • number of clusters per track N ~ 4.5 • $\sigma_9 \sim 6 \text{ mrad}$ (per track) • -> ~ 4 $\sigma \pi/\text{K}$ separation at 4 GeV/c

- ${\boldsymbol .}$ 10 μm pores required for 1.5T
- collection eff. and active area fraction should be improved
- . aging study should be carried out

TOF capability

With the use of a fast photon detector, a proximity focusing RICH counter can be used also as a time-of-flight counter.

Cherenkov photons from two sources can be used:

- photons emitted in the aerogel radiator
- photons emitted in the PMT window

TOF capability: photons from the ring

Time resolution for Cherenkov photons from the aerogel radiator: 50ps \rightarrow agrees well with the value from the bench tests

Resolution for full ring (~10 photons) would be around 20 ps

Distribution of hits on the MCP-PMT (13 channels were instrumented) - left Corrected distribution using the tracking information - left

Peter Križan, Ljubljana

TOF capability: window photons

Expected number of detected Cherenkov photons emitted in the PMT window (2mm) is ~15

 \rightarrow

Expected resolution ~35 ps

TOF test with pions and protons at 2 GeV/c

Distance between start counter and MCP-PMT is 65cm

Time-of-flight with photons from the PMT window

Benefits: Čerenkov threshold in glass (or quartz) is much lower than in aerogel. Cherenkov angle Cherenkov angle aerogel, n=1.05 0.3 *********** Aerogel: kaons 0.2 (protons) have no signal below 1.6 GeV (3.1 GeV): identification 0.1 in the veto mode. 0.5 1.5 2.5 3.5 3 p(GeV/c)Threshold in the window: π K

Window: threshold for kaons (protons) is at ~0.5 GeV (~0.9 GeV): \rightarrow positive identification possible.