

Proximity focusing RICH with flat pannel PMTs as photon detector

Peter Križan *University of Ljubljana and J. Stefan Institute For Belle Aerogel RICH R&D group*

Motivation and requirements Beam test results Optimisation of counter parameters Summary

PID upgrade in the forward direction

improve π/K separation in the forward (high momentum) region for few-body B decays good p/K separation for b -> d γ , b -> s γ improve purity in fully reconstructed B decays ('full recon. tag') low momentum (<1GeV/c) e/ μ/π separation (B ->KII) keep high the efficiency for tagging kaons

 \rightarrow talk by Toru Iijima on Belle PID upgrade (Friday)

PID upgrade in the forward direction

Peter Križan, Ljubljana

Beam tests

Beam Test Nov. 2001

36 MAPMTs (R5900-M16) @ 30mm pitch, 36% eff. area, 192 readout channels

single photon Cherenkov angle resolution better than 10mrad

number of photons consistent with expectations, but clearly too low

Beam tests Nov. 2002 - 2004

new aerogel samples new photon detector Hamamatsu H8500 (flat pannel PMT) new readout electronics (1024 channels)

 \rightarrow Ichiro Adachi's talk on aerogel R+D

Hamamatsu H8500 (flat panel PMT) as photon detector

- 8x8 multi-anode PMT (64ch) by HPK
- Effective area=89% (□49mm for □51.7mm package)
- 4x4 array used in beam tests (1024 ch in total)

Not suitable for operation in magnetic field, but still good for the understanding of the detector behavior \rightarrow intermediate step in our R+D

> → talks by Takayuki Sumiyoshi and Andrej Gorišek

Read-out electronics

- IC's with analog memory
- 2 analog memory chips for 1 PMT (each for 32ch)
- 8 step pipe-line ($1\mu s \times 8$)
- Serial signal sent to VME ADC (10μ s period x 256ch)
- Use 4 VME ADC channels for 1024 ch readout

Assembled flat panel PMT with read-out

Analog memory board

Beam test set-up

- RICH1: Flat panel PMTs and aerogel radiator
- MWPCs for tracking

 π^{-} beam

0.5 to 4.0 GeV/c

- RICH2: as a reference (with R5900-M16 PMTs)
- CO₂ threshold Gas Cherenkov counter for electron veto

Beam test results

Clear rings, little background

75

Cherenkov angle resolution and number of photons

RICH 2004, Playa del Carmen

Peter Križan, Ljubljana

Resolution for single photons

Typically around 13 mrad (for 2 cm thick aerogel) Shown as a function of thickness, momentum

RICH 2004, Playa del Carmen

Peter Križan, Ljubljana

Number of photons

As a function of momentum, thickness, transmission length

In good agreement with expectations.

Can we increase the number of photons by keeping the good single photon resolution resolution?

→talk by Samo Korpar

PID capability on test beam data

From typical values (single photon resolution 13mrad and 6 detected photons) we can estimate the Cherenkov resolution per track: 5.3mrad

-> 4.3 sigma π/K separation at 4GeV/c.

Illustration of PID performance: Cherenkov angle distribution for pions at 4GeV/c and 'kaons' (pions at 1.1GeV/c with the same Cherenkov angle as kaons at 4GeV/c).

Details on the beam test: NIM A521 (2004) 367 (physics/0309032)

Resolution studies

Cherenkov angle distribution

Radiator: thickness 20.5mm

 $\sigma_{\theta} \text{ is obtained by fitting the } \theta \\ \text{distribution Gaussian +} \\ \text{background}$

 σ_{θ} (data)=14.3mrad

$$\sigma_{\theta}(\text{calc}) = \sqrt{\sigma_{\text{emp}}^2 + \sigma_{\text{pix}}^2}$$

σ(calc)	11.8 mrad
σ_{pix}	7.8 mrad
σ_{emp}	8.8 mrad

$$\sigma_{\theta} = \sqrt{\sigma_{\rm emp}^{2} + \sigma_{\rm pix}^{2} + \sigma_{\rm rest}^{2}}$$

What is rest?

RICH 2004, Playa del Carmen

Peter Križan, Ljubljana

Resolution studies 2

Non-uniformity of the radiator? Group tracks according to the impact position in 5mmx5mm regions, plot Cherenkov angle distribution for each of them:

mean 0.3061 rad sigma (11.36 mrad	mean 0.3037yrad sigma 11.83 mrad	mean 0.3048 rad sigma 10.65 mrad	mean - 0.3039 rad sigma (11.87 mrad wasadi orbus	mean 0.3044 rad sigma 11.88 mrad	mean 0.3089 rad sigma 9.68 mrad
mean	mean	mean	mean	mean	- mean
0.3049 rad	[0.3035 rad	10.3045 rad	0.3043 yad	0.3042 rad	- 0.3059 rad
sigma	sigma	sigma	sigma	sigma	sigma
10.94 mrad	[11.63 mrad	11.67 mrad	11.99 mrad	12.51 mrad	- 10.86 mrad
mean	mean	mean	mean	mean	-mean
0.3048 rad	0.3040 rad	0.3046 rad	0.3050 rad	0.3049 rad	0.3043 rad
sigma	sigma	sigma	sigma	sigma	sigma
10.99 mrad	11.45 mrad	11.30 mrad	12.08 mrad	11.66 mrad	113.79 mrad
mean	mean	mean	mean	mean	mean
0.3032 rad	0.3040 rad	0.3047 rad	0.3049 yad	-0.3044 rad	0.3052 rad
sigma	sigma	sigma	sigma	sigma	sigma
11.02 mrad	11.82 mrad	11.40 mrad	11.72 mrad	11.91 mrad	10.36 mrad
mean	mean	mean	mean	mean	mean
0.3045 rad	0.3033 vad	0.3039 rad	_0.3039 rad	0.3045 rad	0.3038 rad
sigma	sigma	sigma	sigma	sigma	sigma
11.27 mrad	11.19 mrad	12.20 mrad	_12.42 mrad	11.70 mrad	12.25 mrad
mean	mean	mean	mean	mean	mean
0.3040 rad	0.3034 rad	0.3048 rad	-0.3043 rad	0.3042 rad	0.3039 rad
sigma	sigma	sigma	sigma	sigma	sigma
11.14 mrad	11.62 mrad	10.71 mrad	12.15 mrad	12.18 mrad	12.44 mrad

Cherenkov angle variation due to non-uniformity of aerogel: 1 mrad

Resolution studies 4

Does it depend on the orientation of the sample?

Measure the Cherenkov angle and sigma for both orientations of the aerogel tile \rightarrow some samples have large difference in sigma for AB and BA cases

Optimisation of counter parameters

How to design radiator tiles: at the tile boundary photons get lost.

- Scan with the beam across the tile boundary. As expected, the yield is affected over a few mm in the vicinity of the boundary.
- A simple model (all photons hitting the boundary get lost) accounts for most of the dependence

Reduce the fraction of tracks close to tile boundaries and corners

Tiling of the radiator

Two aerogel radiator tiling schemes for two max. tile size cases

 \rightarrow Ichiro Adachi's talk on aerogel R+D

Summary

- Proximity focusing RICH with aerogel as radiator looks as a very promissing option for the PID system upgrade of the endcap part of the Belle detector
- Flat panel PMT is an excellent single photon detector, suitable for RICH counters in absence of magnetic field
- Efficiently used to test design options of the Belle endcap PID upgrade, understanding of the system, improved aerogel samples and configirations, read-out systems under development.
- R&D issues for Belle endcap upgrade: development and testing of a multichannel photon detector for high mag. fields
- Mass production of large aerogel tiles
- Readout electronics

Back-up slides

Surface uniformity

Study uniformity of the sensitivity over the surface

- source: LED in the eyepiece of a microscope on a 2d stage
- spot size 50 μm

Read-out electronics

* System developed by Meisei Co.

RICH 2004, Playa del Carmen