



# Evidence for D<sup>0</sup> mixing at Belle

### Peter Križan University of Ljubljana and J. Stefan Institute (for the Belle Collaboration)

## Belle @ KEK-B in Tsukuba





#### Peak luminosity: $1.7 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$



Data sample >750M BB-pairs, >850M cc pairs

1.5T SC solenoid

**ToF counter** 





**Motivation** 

→M. Sokoloff's talk

Belle@KEK-B

Search for D<sup>0</sup> mixing in D<sup>0</sup> $\rightarrow$ K<sup>+</sup> $\pi$ <sup>-</sup> and semileptonic decays

 $D^0 \rightarrow K^+K^-$ ,  $\pi^+\pi^-$ : apparent lifetime of a CP eigenstate

 $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ : time-dependent Dalitz plot analysis

CP violation searches in D mixing

Summary and prospects

# $D^0 - \overline{D}^0$ mixing



An arbitrary linear combination of the neutral D-meson flavor eigenstates  $a |D^0\rangle + b |\overline{D}^0\rangle$ 

is governed by a time-dependent Schroedinger equation

$$i\frac{d}{dt}\binom{a}{b} = H\binom{a}{b} = (M - \frac{i}{2}\Gamma)\binom{a}{b}$$

M and  $\Gamma$  are 2x2 Hermitian matrices.

The light D<sub>1</sub> and heavy D<sub>2</sub> mass eigenstates are:

$$D_{1,2} \rangle = p \left| D^0 \right\rangle \pm q \left| \overline{D}^0 \right\rangle$$



Time evolution is governed by the parameters x, y,  $\overline{\Gamma}$ 

$$x = \frac{m_1 - m_2}{\overline{\Gamma}}; y = \frac{\Gamma_1 - \Gamma_2}{2\overline{\Gamma}}; \overline{\Gamma} = \frac{\Gamma_1 + \Gamma_2}{2}$$

A D<sup>0</sup> at t=0 evolves as:  $\left| D^{0}(t) \right\rangle = \left[ \left| D^{0} \right\rangle \cosh\left(\frac{ix+y}{2}t\right) + \frac{q}{p} \left| \overline{D}^{0} \right\rangle \sinh\left(\frac{ix+y}{2}t\right) \right] e^{-(\frac{1}{2}+i\frac{m}{\overline{\Gamma}})t}$ 

Decay time distribution of different final states of  $D^0$ ,  $\overline{D^0}$ , and  $D_{CP}$ : sensitive to different combinations of mixing parameters.

# $D^0 - \overline{D}^0$ mixing

Mixing in the neutral D system: highly suppressed due to GIM mechanism ( $m_s \sim m_d$ ).  $\rightarrow$  A place to search for new physics (in principle).

Mixing in SM: completely dominated by long-range contributions.

New physics: x > y, CPV  $\rightarrow$  E. Golowich et al., arXiv:0705.3650



Experimental methods in D<sup>0</sup> mixing searches



The method: investigate D decays in the decay sequence:  $D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow \text{specific final states}$ 

Used for tagging the initial flavour and for background reduction



 $p_{cms}(D^*) > 2.5 \text{ GeV/c}$  eliminates D meson production from b  $\rightarrow$  c



D<sup>0</sup> mixing in D<sup>0</sup> $\rightarrow$ K $\pi$  and Kev decays



The method: search for D mixing in the decay sequence:  $D^{*+} \rightarrow D^0 \pi^+$ ,  $D^0 \rightarrow flavour$  specific final state.

Semileptonic decay:

- •K<sup>-</sup> e<sup>+</sup> v : no mixing
- •K<sup>+</sup>  $e^{-}v$  : mixing

(RS, Right Sign)

(WS, Wrong Sign)

measure WS rate

Hadronic decay:

•K<sup>-</sup>  $\pi^+$ : no mixing

•K<sup>+</sup>  $\pi^-$ : mixing or doubly Cabbibo suppressed (DCSD)

measure WS time evolution

### $D^0$ mixing in $D^0 \rightarrow K\pi$ decays

#### $D^0 \rightarrow K\pi$ time evolution

for x,y << 1



### $D^0$ mixing in $D^0 \rightarrow K\pi$ decays



#### PRL 96, 151801 (2006), 400fb<sup>-1</sup>

#### Signal extraction



#### Wrong sign combinations: $D^0 \rightarrow K^+ \pi^-$

### $D^0$ mixing in $D^0 \rightarrow K\pi$ decays



#### Results



PRL 96, 151801 (2006), 400fb<sup>-1</sup>

### $D^0$ mixing in $D^0 \rightarrow Ke_V$ decays



Wrong charge combination  $\rightarrow$  mixing (no DCS decays)

Again tag with D<sup>\*+</sup> charge:  $D^{*+} \rightarrow D^0 \pi^+$ ,  $D^0 \rightarrow K^-e^+ \nu$ 

Selection criteria:

•c.m.s. momentum of the Ke system > 2 GeV (rejects bb, combinatorial background)

•Inv. mass of  $e^-e^+$  ( $e^+ \rightarrow \pi^+$ ) > 0.15GeV (rejects  $\gamma$  conversions)

•Cut on decay time (signal: t<sup>2</sup> e<sup>-t</sup>)

Neutrino reconstruction: hermiticity, kinematic constraints.

Signal yield:  $\Delta m = m(\pi_s Kev) - m(Kev)$ 

 $N_{RS} = (229.45 \pm 0.69) \cdot 10^3$ 

XXVII Physics in Collision, Annecy



PRD72, 071101 (2005), 253 fb<sup>-1</sup>











PRL 98, 211803 (2007), 540fb<sup>-1</sup>

BELLE



### D<sup>0</sup> mixing in K+K-, $\pi$ + $\pi$ -



Expected statistical precision in  $\tau$ (K+K<sup>-</sup>/ $\pi$ + $\pi$ -): ~0.3%

 →Cross-checks:
MC: y<sub>CP</sub>(out) - y<sub>CP</sub>(input) < 0.04% for a large range of input values y<sub>CP</sub> independent of resolution function parameterization: R(t) = single Gaussian → Δτ = 3.9%, but Δy<sub>CP</sub> = 0.01%
Exchanging data side band with signal window background from tuned MC: Δy<sub>CP</sub> = -0.04%
Measure y<sub>CP</sub> with subsamples (run periods, K+K<sup>-</sup>/π+π<sup>-</sup>, separate free offset t<sub>0</sub>) → all consistent

→Systematic error: conservative estimates: equal t<sub>0</sub> 0.14%, acceptance 0.12%, selection variation 0.11%, signal band/sideband background differences 0.09%, background distribution B(t) 0.07%, M window position 0.04% → 0.25%





Rate: terms with  $cos(x\Gamma t) exp(-\Gamma t)$ ,  $sin(x\Gamma t) exp(-\Gamma t)$ ,  $exp(-(1+-y)\Gamma t) \rightarrow sensitive to <u>x and y</u> (n.b. for K<sup>+</sup><math>\pi$ <sup>-</sup>: x<sup>2</sup>, y<sup>2</sup>)



arXiv: 0704.1000v2, 540 fb<sup>-1</sup>



Results (fit fractions, phases) in agreement with PRD73, 112009 (2006) (measurement of  $\phi_3(\gamma)$ )

### D<sup>0</sup> mixing in $K_S \pi^+ \pi^-$









arXiv: 0704.1000v2, 540 fb<sup>-1</sup> 0.02 y<sub>cP</sub>, 3σ submitted to PRL 0.015 •K<sup>+</sup>K<sup>-</sup> / π<sup>+</sup>π<sup>-</sup>: y=0 has **γ<sub>CP</sub>, 1**σ 0.01 C.L. 6x10-4 •K<sub>s</sub> π<sup>+</sup>π<sup>-</sup>: (x,y)=(0,0) has 0.005 C.L. 2.6% **x**, **y**, 1σ 0 x, y, 3σ 0.03 x 0.04 -0.01 0.01 0.02

#### PRL 98, 211803 (2007), 540fb<sup>-1</sup>

June 28, 2007

У

XXVII Physics in Collision, Annecy

Peter Križan, Ljubljana

#### D<sup>0</sup> mixing: Belle + Babar D<sup>0</sup> $\rightarrow$ K $\pi$ results combined



### D<sup>o</sup> mixing: all results combined



### Search for CP violation



### CPV in D<sup>0</sup> system

Relevant CKM elements of the 2x2 submatrix:

 $\begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix}$ phase:  $\sim \frac{2\eta A^2\lambda^5}{\lambda} \sim O(10^{-3})$ 

CPV in D<sup>0</sup> very small,  $\leq 10^{-3}$ ; parameterization:

<sup>3</sup>;  $\frac{q}{p} \neq 1$ ;  $\frac{q}{p} \equiv (1 + \frac{A_M}{2})e^{i\varphi}$ ;  $A_M, \varphi \neq 0$ 

 $D^{0} \rightarrow K^{+}\pi^{-}, K^{+}K^{-} / \pi^{+}\pi^{-}, K_{S} \pi^{+}\pi^{-}$ 

t evolution depends also on CPV parameters

- x, y at upper limit of SM expectation  $\rightarrow$  search for CPV
- at current level of sensitivity: positive signal clear indication of NP









### Prospects: near future



B-factories near future: 1 ab<sup>-1</sup>

Contours for combined  $K_{s}\pi^{+}\pi^{-}$  and  $KK/\pi^{+}\pi^{-}$  (assuming present mean)



CLEO and BESIII

new measurements of the phase  $\boldsymbol{\delta}$ 

→ needed to interpret the measurements of <u>x' and y'</u> in terms of <u>x and y</u> in the  $K^+\pi^-$  decays



Super-B factory: rough expectations at 5 ab<sup>-1</sup>

combination of results from K $\pi$ , KK/ $\pi\pi$ , K<sub>s</sub> $\pi\pi$ 

 $\sigma(x) \sim \sigma(y) \sim 0.10\%$   $\rightarrow$  mixing

σ(|q/p|) ~ 0.09, σ(φ) ~0.1 →CPV

possible CPV - New Physics – would be tested with ~ O(5) better sensitivity at ~50 ab<sup>-1</sup> (several extensions of SM predict CPV ~ O(1%)) Y. Grossman et al.,

hep-ph/0609178