

Prospects of SuperKEKB and Belle-II

Peter Križan University of Ljubljana and J. Stefan Institute

ECFA Plenary Meeting, CERN, Nov 26-27, 2009

University of Ljubljana

"Jožef Stefan" Institute

• Physics case for a Super B factory

- •Accellerator upgrade → SuperKEKB
- •Detector upgrade \rightarrow Belle-II
- •Summary

B factory main task: measure **CP** violation in the system of **B** mesons

specifically: various measurements of complex elements of Cabbibo-Kobayashi-Maskawa matrix

CKM matrix is unitary

deviations could signal processes not included in SM

$$\begin{pmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\overline{\rho} - i\overline{\eta}) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix}$$

Peter Križan, Ljubljana

q

q

W±

CKM: almost a diagonal matrix, but not completely CKM: almost real, but not completely!

CP violation in the B system

CP violation in B system: from the discovery (2001) to a precision measurement (2006)

$$\sin 2\phi_1 = \sin 2\beta$$
 from b \rightarrow ccs

535 M BB pairs

sin2 ϕ_1 = 0.642 ±0.031 (stat) ±0.017 (syst)

All measurements combined...

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau \nu$, $D \tau \nu$) by fully reconstructing the other B meson
- Observation of D mixing
- CP violation in $b \rightarrow s$ transitions: probe for new sources if CPV
- Forward-backward asymmetry (A_{FB}) in $b \rightarrow sl^+l^-$ has become a powerfull tool to search for physics beyond SM.
- Observation of new hadrons

- Fully reconstruct one of the B's to
 - Tag B flavor/charge
 - Determine B momentum
 - Exclude decay products of one B from further analysis

 \rightarrow Offline B meson beam!

Powerful tool for B decays with neutrinos

Event candidate $B^{-} \rightarrow \tau^{-} \nu_{\tau}$

Charged Higgs limits from $B^- \rightarrow \tau^- \nu_{\tau}$

$$r_{H} = \frac{BF(B \to \tau \nu)}{BF(B \to \tau \nu)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2}\beta\right)^{2}$$

 \rightarrow limit on charged Higgs mass vs. tan β

Why FCNC decays?

Flavour changing neutral current (FCNC) processes (like $b \rightarrow s, b \rightarrow d$) are fobidden at the tree level in the Standard Model. Proceed only at low rate via higher-order loop diagrams. Ideal place to search for new physics.

How can New Physics contribute to $b \rightarrow s$?

For example in the process:

 $B^0 \to \eta' K^0$

Ordinary penguin diagram with a t quark in the loop

Diagram with supersymmetric particles

Searching for new physics phases in CP violation measurements in $b \rightarrow s$ decays

Prediction in SM: CP violation parameter

$$a_f = -\operatorname{Im}(\lambda_f) \sin(\Delta m t)$$

$$\operatorname{Im}(\lambda_f) = \xi_f \sin 2\phi_1$$

The same value as in the decay $B^0 \rightarrow J/\psi K_S!$

This is only true if there are no other particles in the loop! In general the parameter can assume a different value $sin2\phi_1^{eff}$

Search for NP: $b \rightarrow sq\overline{q}$

 $b \rightarrow s ||^{-1}$ was first measured in $B \rightarrow K ||^{-1}$ by Belle (2001).

Important for further searches for the physics beyond SM

Particularly sensitive: backward-forward asymmetry in K^{*} I⁺I

$$A_{FB} \propto \Re \left[C_{10}^* (sC_9^{eff}(s) + r(s)C_7) \right]$$

 C_i : Wilson coefficients, abs. value of C_7 from b \rightarrow s γ s=lepton pair mass squared

Zero-crossing q² for A_{FB} will be determined with a 5% error with 50ab⁻¹.

Strong competition from LHCb and ATLAS/CMS

D⁰ mixing in K⁺K⁻, $\pi^+\pi^-$

Decay time distributions for KK, $\pi\pi$, K π

An observation of CP violations would be a clear sign of new physics

Precision measurements of τ decays

LF violating τ decay?

- There is a good chance to see new phenomena;
 - CPV in B decays from the new physics (non KM).
 - Lepton flavor violations in τ decays.
- They will help to diagnose (if found) or constraint (if not found) new physics models.
- Even in the worst case scenario (such as MFV), $B \rightarrow \tau \nu$, $D\tau \nu$ can probe the charged Higgs in large tan β region.
- Physics motivation is independent of LHC.
 - If LHC finds NP, precision flavour physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be a unique way to search for the TeV scale physics.

- There are many more topics: CPV in charm, new hadrons, ...
- Lessons from history: the top quark

Physics of top quarkFirst estimate of mass: BB mixing \rightarrow ARGUSDirect production, Mass, width etc. \rightarrow CDF/D0Off-diagonal couplings, phase \rightarrow BaBar/Belle

The KEKB Collider & Belle Detector

- e⁻ (8 GeV) on e⁺(3.5 GeV)
 - √s ≈ m_{Y(4S)}
 - Lorentz boost: $\beta \gamma = 0.425$
- 22 mrad crossing angle
- Operating since 1999

Peak luminosity (WR!) : **2. 1 x 10³⁴ cm⁻²s⁻¹**

The KEKB Performance

Luminosity Records:

- Peak L = 2.1×10^{34} cm⁻² s⁻¹ (2x the design value)
- Daily $\int Ldt = 1.5 \, fb^{-1}$ (2.5 x the design value)
- **Total ∫Ldt ~ 950 fb⁻¹** (as of July 2009)

Accelerator upgrade strategy

Why did we give up the "high current scheme"?

- To achive the required luminosity, we had to assume a beam-beam parameter of 0.3 while with Belle we achieved 0.09
- Bunch length could not be reduced to 3mm because of the coherent synchrotron radiation.
- No solution was found for IR design to realize $\beta_x^*=20$ cm.
- Higher operating costs.
- →Adopted the "Nano-beam scheme" as proposed by P. Raimondi and the SuperB group → design is on-going no showstopper up to now.

To achieve a luminosity of 8.0x10³⁵cm⁻²s⁻¹ (x40 of peak KEKB value),

- Beam current $1.7/1.4 \rightarrow 3.6/2.6 \text{ A} (x2)$
- Beam-beam parameter $0.09 \rightarrow 0.09$ (x1)
- Small beta function at IP (x 1/20): horiz.: 1200→ 32/25mm / vert.: 5.9→0.27/0.42mm; beam size 100µm(H) x 2µm(V) → 10µm(H) x 59nm(V)
- Crab waist is considered as an option

Design parameters

	KEKB Design	KEKB Achieved : with crab	SuperKEKB High-Current	SuperKEKB Nano-Beam
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	3.5/8.0	4.0/7.0
β _x * (cm)	100/100	120/120	20/20	3.2/2.5
β_{y}^{*} (mm)	10/10	5.9/5.9	3/6	0.27/0.42
ε _x (nm)	18/18	18/24	24/18	3.2/1.7
σ _γ (μm)	1.9	0.94	0.85/0.73	0.059
ξγ	0.052	0.129/0.090	0.3/0.51	0.09/0.09
σ _z (mm)	4	~ 6	5/3	6/5
I _{beam} (A)	2.6/1.1	1.64/1.19	9.4/4.1	3.6/2.6
N _{bunches}	5000	1584	5000	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	53	80

Beam duct for SuperKEKB

Copper beam duct with ante-chambers

Copper is required to withstand intense SR power

IR Superconducting Magnets

IR Superconducting magnets: main quads(8), corrector solenoids(2), corrector coils(43)

Preliminary! Under optimisation

- For the nano-beam option

 \rightarrow There are two final-Q magnets in both L / R sides

- 7x4GeV beam energies

To solve the problem of dynamic aperture.

- Crossing angle becomes 83 mrad

to put the final-Q magnets closer to the IP

- The QCS chamber radius is 1cm

 \rightarrow to avoid the resonant cavity structure \rightarrow IP beam-pipe radius should be 1cm

Detector backgrounds are under study – depend on the new machine parameters. Different in the nano-beam option than for the high current version

Requirements for the Belle II detector

Critical issues at L= 8 x 10^{35} /cm²/sec

- Higher background (×20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Possible solution:

- Replace inner layers of the vertex detector with a pixel detector.
- Replace inner part of the central tracker with a silicon strip detector.
- Better particle identification device
- Replace endcap calorimeter crystals
- Faster readout electronics and computing system.

Belle Upgrade for Super-B

Vertex detector upgrade: PXD+SVD

- Configuration: 4 layers → 6 layers (outer radius = 8cm→14cm)
 - More robust tracking
 - Higher Ks vertex reconstr. efficiency
- Inner radius: $1.5 \text{cm} \rightarrow 1.3 \text{cm}$
 - Better vertex resolution
- Sensors of the two innermost layers L1+L2: DEPFET Pixel sensors → PXD
- Layers 3-6: normal double sided Si detector (DSSD) →SVD
- Strip readout chip: VA1TA \rightarrow APV25
 - Reduction of occupancy coming from beam background.
 - Pipeline readout to reduce dead time.

TOP test beam performance: proof-of-principle

Proximity focusing RICH with silica aerogel as Cherenkov radiator in a 'focusing' configuration

Proximity focusing RICH: Beam test performance

concontratoro

Cherenkov ring with SiPMs

First successful use of SiPMs as single photon detectors in a RICH counter!

NIM A594 (2008) 13

Calorimeter (ECL) Upgrade

- Increase of dark current due to neutron flux
- Fake clusters & pile-up noise
- Barrel: 0.5µs shaping + 2MHz w.f. sampling.
 Endcap: rad. hard crystals with short decay time (e.g. pure CsI) + photopentodes 30ns shaping + 43MHz w.f. sampling

KLM upgrade in the endcaps

y-strip

plane

Scintillator-based KLM (endcap)

- Two independent (x and y) layers in one superlayer made of orthogonal strips with WLS read out
- Photo-detector = avalanche photodiode in Geiger mode (SiPM)
- ~120 strips in one 90° sector (max L=280cm, w=25mm)
- ~30000 read out channels

Project timetable

Near-term plan

- Detector proposals (by Dec. 2009)
- Decisions on technology choices (Barrel PID configuration/photon detector, ECL endcap crystalls and photosensors)
- TDR by March 2010

Belle-II Collaboration

2004.06: LoI for SuperKEKB 2008.01: KEK Roadmap \rightarrow identified as high priority project at KEK 2008.12: New collaboration (Belle-II) officially formed

✤ 13 countries/region, 43 institutes, ~300 members

Separate group/organization from Belle

2009.11: 4th Open Collaboration Meeting

European groups of Belle-II

- •Austria: HEPHY (Vienna)
- •Czech republic: Charles University in Prague
- •Germany: U. Bonn, KIT Karlsruhe, MPI Munich, U. Giessen
- •Poland: INP Krakow
- •Russia: ITEP (Moscow), BINP (Novosibirsk),
- •Slovenia: J. Stefan Institute, U. Ljubljana, U. Maribor, U. Nova Gorica

Sizeable fraction of the collaboration: in total 100 collaborators out of 287!

Long term plan:

•3 year shut-down for upgrade of the accelerator and detector

•Start machine operation in 2013

- SuperKEKB and Belle-II are priorities of KEK
- The Japanese government has allocated 32 oku-yen (32 M\$) for upgrade R&D in FY 2009, as a part of its economic stimulus package. This is considered as a very important sign in Japan.
- KEK has submitted to the Ministry of education, science, and technology (MEXT) a budget request for FY 2010 and beyond for 350 M\$ for the construction of SuperKEKB. MEXT submitted a request for the upgrade budget to the Ministry of finance.
- Japanese government is currently reviewing all major projects. The decision is expected by the end of this year.
- Several non-Japanese funding agencies have already allocated sizable funds for the upgrade.

Summary

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance.
- Major upgrade at KEK in 2010-13 \rightarrow Super B factory, L x40
- Essentially a new project, all components have to be replaced, options to be frozen in the next few months
- The project has a strong European participation (about 1/3!)
- A physics reach update is being prepared to be made public soon
- Expect a new, exciting era of discoveries, complementary to LHC