KMI seminar, Nagoya, Nov 25, 2022

Instrumentation for advances in PET medical imaging

Peter Križan Ljubljana and Nagoya

University of Ljubljana

"Jožef Stefan" Institute

Contents

PET – positron emission tomography
Current topics in PET
Flexible limited angle PET scanner
Cherenkov radiation based PET scanner
Conclusions and summary

Interplay of detector R&D for particle physics and medical imaging

- Traditionally excellent collaboration of the two research areas.
- Novel detection techniques required in particle physics \rightarrow with modifications a potential application in medical physics
- ... and vice versa...

One of the recent examples: SiPMs as scintillation light sensors for

- Electromagnetic calorimeters
- PET scanners

PET: positron emission tomography 2

In the blood of the patient a substance is administered that contains radioactive fluorine (e.g. fluorodeoxyglucosis). The places in the body with a higher substance concentration will show a higher activity.

PET: collection of data

PET: image reconstruction

Image reconstruction: from the position and direction of the lines determine the distribution of the radioactive fluorine in the body – similar to the reconstruction of

reactions in particle physics

PET with a time-of-flight information

Detectors for γ rays measure also the time of arrival

 – coincidence of two hits is only acceted if the two times are <10 ns appart

In case time is measured with a much better precision (<1ns) \rightarrow an additional constraint on the point of origin of the two γ rays along the line \rightarrow time-of-flight (TOF) PET

- in the reconstruction, each line contributes to fewer pixels \rightarrow less noise
- \bullet good resolution in time-of-flight \rightarrow limits the number of hit pixels along the line

Peter Križan, Ljubljana

TOF-PET: positron tomography with a time of arrival measurement

TOF-PET: time resolution

t1 = (L/2 - x)/c source at x, distance between detectors = L t2 = (L/2 + x)/ct1 - t2 = 2x/c

 $x = (t1 - t2) c/2 \rightarrow \Delta x = \Delta (t1 - t2) c/2$

resolution in TOF $\Delta(t1-t2) = 300 \text{ ps} \rightarrow \Delta x = 4.5 \text{ cm}$ $\Delta(t1-t2) = 66 \text{ ps} \rightarrow \Delta x = 1 \text{ cm}$

Motivation for Fast TOF PET

- Paradigm shift in medicine from:
 - From Treatment of obvious disease
 - to early diagnosis / prevention
- This leads to more stringent requirements on PET
 - Sensitivity
 - Specificity
- Targeted Radionuclide Therapy (TRT) & Theranostics
 - introduced an urgent need for more widespread and accurate PET

Number of PET scanners per million people

Current situation

- Standard clinical scanners are sub-optimal:
 - Cost of equipment, limited access, performance.
- Novel long axial PET scanners offer a very attractive solution in terms of
 - increased sensitivity and
 - enabling fast pharmacokinetics/pharmacodynamics.
- They pose significant challenges both
 - Financially
 - Logistically

State-of-the-art in TOF (CTR)

- Clinical scanner:
 - Siemens Biograph Vision PET/CT \rightarrow **214 ps**

https://www.siemenshealthineers.com/molecularimaging/pet-ct/biograph-vision

- Laboratory measurement:
 - Gundacker et al, Phys. Med. Biol. 65 (2020) 025001 (20pp)
 - $2 \text{ x } 2 \text{ x } 3 \text{ mm LSO} \rightarrow \textbf{58 ps}^{\ast}$
 - 2 x 2 x 20 mm LSO \rightarrow 98 ps*

*measured with high power readout electronics that cannot be scaled to large devices

Gamma detectors for PET

Effective sensitivity
$$S_{\text{eff},D} \propto \eta_{\text{det}}^2 \eta_{\text{geom}} \frac{D}{\Delta t}$$

- detection efficiency $\eta_{\rm det}$ of the detector
- η_{geom} the geometrical efficiency (angular coverage)
- *D* the diameter of the object imaged

Important: Optimize detector CTR to maximize sensitivity

Limitations on timing due to optical travel time

- optical photons, produced in the crystal, need to reach the photodetector
- inside the crystal, optical photons propagate with at a lower speed (c/n) than gamma rays (c)
- refractive index, crystal dimensions → intrinsic travel time spread due to different gamma interaction depths
- for a 15 mm long crystal this contribution is > 40 ps FWHM:

- Can in principle be corrected for by:
 - measuring the depth of interaction (DOI)
 - building the detector with shorter crystals \rightarrow multi-layer configuration
 - use Cherenkov radiation doi: <u>10.1109/TRPMS.2022.3202138 / Potential</u> of a Cherenkov TOF PET scanner

Next generation scalable time-of-flight PET

Superb time resolution enables simplifications in the scanner design

will generally produce distorted images with artefacts unless they have good **time-of-flight** information

The angular sampling requirement to obtain distortionfree images decreases S. Surti, J. S. Karp, Physica Medica 32 (2016) 12–22

G. Razdevšek *et al.*, "Multi-panel limited angle PET system with 50 ps FWHM coincidence time resolution: a simulation study," in *IEEE TRPMS*, doi: 10.1109/TRPMS.2021.3115704.

Potential benefits

Mobility

Portable or bedside PET imaging
 Flexibility

- Adjustable FOV and sensitivity
- Modularity
 - Combining multiple panels \rightarrow multiorgan/total-body PET scanner

Accessibility

 Reduced manufacturing cost and complexity

Simulation of a limited angle system

Geant4/GATE \rightarrow Monte Carlo simulations of digital phantoms and different scanner designs

CASTOR \rightarrow image reconstruction with Maximum Likelihood Expectation Maximization (**MLEM**) algorithm

- Investigate the benefits of coincidence time resolutions
- Study the performance **two-panel** and **fourpanel** designs

Enabling Open Geometry systems

Siemens Biograph Vision

Recent advances in PET medical imaging

Peter Križan, Ljubljana

Simulation study of planar configurations

Simulated arrangement of 30x30 cm2 flat panel detectors

Percent contrast versus background variability (~noise level in the image)

Reconstructed images of a torso and head for the flat panel detectors and the reference scanner Siemens BV

Next generation scalable time-of-flight PET

Address PET challenges by decreasing different contributions using fast CTR

Joint effort: JSI, FBK, ICCUB, I3M, Oncovision and MGH-Harvard

- Front electronics: develop a low-noise, high-dynamic-range ASIC with a time resolution of 20 ps & on-chip TDC
- Improve SiPM sensor
- Explore 2.5 D integration with the photo-sensor to achieve sub-100 ps CTR

Aim: Improve (SNR) without increasing cost associated with axial coverage by resorting to very sparse angular coverage of the patient and long axial field coverage

Joint project

<u>R. Pestotnik</u>^a, J. Álamoⁱ, J. Barberáⁱ, J.M. Benllochⁱ, G. Borghi^b,
<u>R. Dolenec</u>^{c,a}, El Fakhri^d, J. M. Fernández-Tenllado^e, D. Gascón^e,
S. Gómez^{f,e}, A. Gola^b, K. Grogg^d, D. Guberman^e, S. Korpar^{g,a},
<u>P. Križan^{c,a}</u>, S. Majewski^h, R. Manera^e, T. Marin^a, A. Mariscal-Castilla^e, J. Mauricio^e, S. Merzi^b, C. Moreraⁱ, M. Orehar^c,
G. Pavónⁱ, M. Penna^b, G. Razdevšek^c, H. Sabet^d, A. Seljak^a,
<u>A. Studen^{c,a}</u>

^aJožef Stefan Institute, ^bFondazione Bruno Kessler, ^cUniversity of Ljubljana, ^dGordon Center for Medical Imaging, ^eUniversity of Barcelona, ^fUniversity of Catalonia, ^gUniversity of Maribor, ^hUC Davis, ⁱOncovision, Valencia

Managed to get a 3 MEUR EU grant for 5y to further develop the method and construct a prototype ⁽²⁾

Recent advances in PET medical imaging

Fast CTR PET module

How do we plan to achieve such a good CTR?

FastIC readout chip

FASTIC current mode ASIC for fast single photon sensors

- Collaboration of ICCUB (Univ. Barcelona) and CERN
- 8 Inputs: 8 Single Ended (POS/NEG), 4 differential and summation (POS/NEG) in 2 clusters of 4 channels.
- **3 Output modes:** (1) SLVS; (2) CMOS; and (3) Analog.
- Active analog summation of up to 4 SE channels to improve time resolution

- High dynamic range with linear energy response
- Adapted to different detectors: LYSO/LSO, BGO, Cherenkov, Monolithic, etc

talk by David Guberman (ICCUB) at MEDAMI2022

First results with FastIC

- Sensor: FBK-NUVHDLFv2b 3x3 mm², 40 pixel pitch.
- Crystal: LSO:Ce Ca 0.2% of 2x2x3 mm³.

- SPTR with FBK-NUVHDLFv2b 3x3 800 SPTR sigma = 64.39 ps 700 FWHM G = 151.62 ps 600 mu G = 21.694 sj 500 400 300 SPTR sigma = 59.39 ps FWHM \vec{G} +E = 151.16 ps mu G+E = 21.668 200 100 0 20.5 21.0 21.5 22.0 22.5 23.0 20.0 Delay (ns)
- CTR versus crystal length for LYSO and LSO

talk by David Guberman (ICCUB) at MEDAMI2022

Recent advances in PET medical imaging

Next generation ASICs

- ICCUB and CERN are working on FastIC+: integration of 25 ps bin TDC integration on FastIC
 - Planned for Q1 2023
- On the longer term we plan for a 32 ch. ASIC (FastIC32)
 - Pixelated structure: 2.5D (BGA, flip-chip, etc) or 3D integrated

FastIC 32

talk by Alberto Gola (FBK) at MEDAMI2022

FBK SiPM sensor

2.5D integrated SiPM tile for improved timing

In the short and medium term - medium density interconnection

- excellent timing on large photosensitive areas w/o increasing complexity + cost too much.
- SiPMs with TSVs down to 1 mm pitch are connected to the readout ASIC on the opposite side of a passive interposer, in a 2.5D integration scheme.

From Limited angle to Total-body

Increased sensitivity by larger panels

Capability of the planar TOF PET imager: Image of a reconstructed 3 mm slice of an digital phantom acquired by two 120x60cm2 panel detectors (above and below the patient) assuming 100 ps TOF resolution and 10 mm LYSO scintillator thickness.

Conclusions: limited angle PET scanner

- Good coincidence time resolution can:
 - compensate for lower detection efficiency or smaller angular coverage
 - enable us to obtain good image quality with a simple limited angle PET system without distortions or artifacts
- We plan to enable open geometry designs and enable wider spread of PET imaging modality by reducing different contributions to CTR :
 - Optimize scintillator thickness
 - Improve SiPM TSV
 - Fast ASIC
 - 2.5D integration
 - If new faster scintillators emerge, all the detector components will be available to deploy them immediately

Use of Cherenkov light in TOF-PET

Use of Cherenkov radiation for TOF-PET

- lead fluoride (PbF₂) as Cherenkov radiator
- material
- Previous work
- Limitations of Cherenkov TOF-PET
 - single photon detection limited scatter suppression
- Image quality with Cherenkov TOF-PET
 - -whole-body scanner simulations
 - -crystal readout configurations
 - -results

R. Dolenec^{a,b}, D. Consuegra Rodríguez^a, P. Križan^{a,b}, M. Orehar^b, R. Pestotnik^a, G. Razdevšek^b, A. Seljak^a and S. Korpar^{a,c}

^a J. Stefan Institute, Ljubljana, Slovenia
 ^b Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
 ^c Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

https://photodetectors.ijs.si/

One of the important particle identification methods in HEP: use Cherenkov radiation

A charged track with velocity $v=\beta c$ exceeding the speed of light c/n in a medium with refractive index n emits polarized light at a characteristic (Cherenkov) angle,

 $\cos\theta = c/nv = 1/\beta n$

Excellent identification method, but very low light level = few detected photons

Peter Križan, Ljubljana

(c/n) t

Measuring Cherenkov angle

Recent advances in PET medical imaging

Peter Križan, Ljubljana

Use of Cherenkov Light in TOF-PET

γ detectors in traditional PET: scintillator crystal + photodetector

Charged particles (e produced by γ interactions) passing trough dielectric material with $v > c_0/n \rightarrow prompt$ Cherenkov light Excellent Cherenkov radiator material: **lead fluoride (PbF**₂)

	BGO	LSO	PbF ₂	<u>PbF₂ properties:</u>
Density (g/cm ³)	7.1	7.4	7.77	
μ _{511keV} (cm ⁻¹)	0.96	0.87	1.06	- excellent γ stopping properties
Photofraction for 511 keV	0.41	0.32	0.46	J
Raise time (τ_r)	2.8 ns	70 ps	-	
Decay time (τ_d)	300 ns	40 ns		nura Charankay radiator (na
Light yield/511 keV (LY)	3,000	15,000	10 (‡)	- pure cherenkov radiator (no
	I			scintillation)

(‡) in the 250-800 nm wavelength interval

- excellent optical transmission (down to 250 nm), high refractive index (n \sim 1.8)

- low price (1/3 BGO \rightarrow 1/9 LSO)

[Mao, IEEE TNS 57:6 (2010) p.3841]

Previous results

Part of it in collaboration with T. lijima et al; some results already reported at a KMI Wine and cheese seminar in 2016

Peter Križan, Ljubljana

Limitations of Cherenkov TOF-PET

Only 10-20 photons created → **only a few detected**

efficient photodetector and light collection needed

SiPM

- Optical photon travel time spread in the crystal
 - remaining limitation to TOF resolution

- Limited suppression of scattered events:
 - only a few Cherenkov photons detected
 - \rightarrow no energy information
 - detection efficiency drops with lower gamma energy
 - \rightarrow intrinsic suppression

Effect of remaining scatter on image quality?

Whole-body scanner simulations

- Simulation: GATE v8.1
- Geometry:
 - Based on Siemens Biograph Vision PET/CT
 - ring: 19 modules (Axial FOV: 26.3 cm)
 - module: 2 x 8 block detectors
 - block detector: 4 x 2 mini-blocks
 - mini-block: 5 x 5 crystal array
 - . crystal: 3.2 x 3.2 x 20 mm³
- Optical simulations (Cherenkov):
 - Surfaces: Geant4 UNIFIED model
 - reflector (diffuse, R=95%, n=1.0)
 - **black** (R=0%, n=1.5)
 - Photodetector: Hamamatsu S14520 SiPM
 - Single Photon Time Resolution (SPTR): **70 ps** FWHM
 - SiPM dark counts not modeled
- Reconstruction: CASToR v3.1.1
 - Custom double Gaussian TOF kernel [CASToR workshop]
 - OSEM-8it:5sub, 1.6 mm voxel, 5 mm filter

Crystal readout configurations

Reference scanner

- LSO scintillator
- Energy window: 435-585 kev
- Energy resolution: 10%
- CTR: 214 ps

Cherenkov photon generation, propagation simulated
Timing defined by first optical photon detected

SPTR = single photon time resolution

Results: CTR distributions

Results: NECR

38/14

•The "Noise Equivalent Count" is the number is the number of counts from a Poisson distribution (standard deviation estimated by SQRT{N}) that will yield the same noise level as in the data at hand.

Recent advances in PET medical imaging

Results: Image Quality

• NEMA image quality phantom

1-sided-210ps-720ps

Reference-scanner-214ps

2-sided-124ps-438ps

••••

6-sided-122ps-233ps

Results: Total-body

Long axial field of view (LAFOV) ~ 1 m Image quality metrics:

-Mean Structural Similarity Index -Measure (MSSIM) Normalized Root Mean Square Error (NRMSE)

Ref-distribution (MSSIM = 1)(NRMSE = 0)

Ref-scan-ext-214ps MSSIM = 0.34NRMSE = 0.58

1-sided-ext-210ps-720ps MSSIM = 0.31

NRMSE = 0.64

NRMSE = 0.60

Recent advances in PET medical imaging

Conclusion: Cherenkov based scanners

- Using (exclusively) Cherenkov light in TOF-PET has potential to
 - improve TOF resolution
 - reduce scanner cost (total-body)
- Experiments have demonstrated
 - CTR as low as 30 ps [Ota, Phys. Med. Biol. 64 (2019) 07LT01]
 - detection efficiency (module) of 35% [Dolenec, NIM A 952 (2020) 162327]
- No energy information available \rightarrow effect on image quality?
- Cherenkov TOF-PET scanner simulations
 - better sensitivity and CTR compensate higher scatter
 - image quality comparable to state-of-the-art
- Advanced detector geometries (2-sided top-bottom, multi-layer)
 - even better image quality

[G. Razdevšek, IEEE TRPMS (2022) DOI: 10.1109/TRPMS.2022.3202138]

Reference-scanner-214ps

1-sided-210ps-720ps

41/14

Summary

Interplay of detector R&D for particle physics and medical imaging has a long history, and this will remain one of the sources of innovation in medical imaging

Limited angle devices with very fast gamma detection look very promissing – lower cost, flexibility in use, affordable total-body scanner

Cherenkov radiation based annihilation gamma detectors offer a promising method for very fast detection and potentially cheaper devices