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Parameters of photo-sensors

Photon detection efficiency (PDE)
• quantum efficiency
• collection efficiency / Geiger discharge probability
Granularity
Time resolution (transient time spread – TTS)
Long term stability
Operation in magnetic field 
Dark count rate
+ ...
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Photon detection in RICH counters

RICH counter: measure photon impact point on the 
photon detector surface 

 detection of single photons with 
• sufficient spatial resolution
• high efficiency and good signal-to-noise ratio
• over a large area (square meters)

Special requirements:
• Operation in magnetic field
• High rate capability
• Very high spatial resolution
• Excellent timing (time-of-arrival 

information)
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Fast photon detection

New generation of Cherenkov counters: precise time 
information needed to further improve performance:

• Reduce chromatic abberation in a RICH detector
(measure group velocity): Focusing DIRC

• Combine TOF and RICH techniques: TOP (Time-of-
propagation counter), TORCH

• Dedicated TOF

New possibilities in medical imaging: TOFPET with
Cherenkov light

 Need photo sensors with excellent timing
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Multianode PMT Hamamatsu R5900 with metal foil dynodes

First fast multianode sensor for single photons: MA PMT

•Excellent single photon pulse height 
spectrum

•Low noise (few Hz/ch)

•Low cross-talk (<1%)

single photon pulse 
height spectrum

NIM A394 (1997) 27
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First major application: HERA-B RICH

Light collection system 
(imaging!) to:
-Eliminate dead areas
-Adapt the pad size

+- 140 mrad
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HERA-B RICH
 Little noise, ~30 
photons per ring

Typical event 

Very good performance:

KK

pKπK

Kaon efficiency and pion fake probability
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Photon detector for the COMPASS RICH-1 upgrade

Upgraded COMPASS RICH-1: 
similar concept as in the 
HERA-B RICH, lens 
system + Hamamatsu 
MAPMTs

New features: 
• UV extended PMTs & lenses (down to 200 nm)
• surface ratio = (telescope entrance surface) / 

(photocathode surface) = 7
• fast electronics with <120 ps time resolution
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RICH for CBM at FAIR (GSI)

RICH: electron ID (= strong π
suppression) and hadron ID

Compressed Baryonic Matter experiment

• 2.25 m long CO2 gas radiator

• photon detector: 2 MA PMT planes

• need sensitivity down to 180nm

One of the sensor 
candidates: a recent 
version of the R5900  

Hamamatsu R11265-103-M16:
78% effective coverage
SBA cathode, 35% max q.e.
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Extending PMT sensitivity to lower wavelengths

CBM RICH R+D: Wavelength-shifter coating of the PMT window

NIM A766 (2014) 180  
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Flat pannel multianode PMTs
Problem of vacuum based sensors: active area fraction
One possible solution: make a larger sensor

Hamamatsu: flat pannel PMT H8500
● 52 x 52mm², 89% effective coverage
● 64 channels, pixel size 5.8 x 5.8 mm2
● 12 dynodes, metal foil type
● Bialkali cathode, max 25% quantum efficiency
● single photon pulse height distribution not as good as 
in the smaller R5900 (and related tubes like 7600) 
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Flat pannel MA PMTs
First used in a prototype RICH 
for Belle II, with aerogel radiator. 

Clear rings, little background

array of 16 H8500 PMTs
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4cm aerogel single index

2+2cm aerogel

Used for the proof-of-principle test of the 
focusing radiator configuration

NIM A548 (2005) 383 
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Flat pannel MA PMTs: Focusing DIRC
Next step in the DIRC development, remove the stand-off box 

~20 cm

~120 cm

 add a focusing element 
and use fast pixelated photo-
sensors

NIM A766 (2014) 114 



Peter Križan, Ljubljana

Focusing DIRC

One of the two options: Hamamatsu 
flat pannel PMTs.

Super-B factory: 100x higher luminosity => DIRC needs to be smaller and 
faster
Focusing and smaller pixels can reduce the expansion volume (source of 
background hits) by a factor of 7-10 !
Timing resolution improvement: σ ~1.7ns (BaBar DIRC)  σ ≤150-200ps
(~10x better) allows a measurement of the photon group velocity cg(λ) to 
correct the chromatic error of θc. 

Photon detector requirements:
•Pad size <5mm
•Time resolution ~50-100ps

Prototype beam test: Cherenkov 
angle correction vs. TOP 

 NIM A766 (2014) 114
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Flat pannel MA PMTs: CBM RICH

Baseline option for the CBM RICH

News: a novel version of H8500 available, with a 
considerably better single photon pulse height distribution

Same sensor also considered for the CLASS12 RICH

M. Hoek, CLASS12 RICH review
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Micro-channel plate PMTs

• Fast
• Immune to an axial magnetic field 
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MCP PMT timing

MCP PMTs: main peak with excellent 
timing accompanied with a tail

Tails understood (scattering of
photoelectrons off the MCP)
- Inelastic back-scattering
- Elastic back-scattering
good agreement with a simple
model 

σ = 40 ps

 NIMA 595 (2008) 169 
 JINST 4 (2009) P11017

Photonis XP85011
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Elastically backscattered photoelectrons

Results of a simple
modeling: we assume that
the photoelectron back-
scattering by the angle β
is uniform over the solid
angle.

~ 2.8ns

~ 12mm

ld 2max ≈

0max 2tt ≈
 NIMA 595 (2008) 169 
JINST 4 (2009) P11017
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MCP PMT: processes involved in photon detection

Tails can be significantly
reduced by:
• decreased photocathode-

MCP distance and
• increased voltage difference

 NIMA 595 (2008) 169 
JINST 4 (2009) P11017

0max 2tt ≈

ld 2max ≈

MCP PMT parameters 
used: Photonis XP85011
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MCP PMTs in magnetic field
Gain vs B field for different tilt angles

 NIMA 639 (2011) 144
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MCP PMT: improved performance in  
magnetic field

Number of detected hits  on 
individual channels as  a 
function of light spot  position.

Backscattered photoelectrons
get ˝locked˝ to the B field lines

B = 0 T,  
HV = 2400 V

B = 1.5 T,  
HV = 2500 V

In the presence of magnetic field, charge sharing and cross talk due to 
long range photoelectron back-scattering are considerably reduced.   
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Aerogel radiator Hamamatsu HAPD + readout

Barrel PID: Time of Propagation Counter (TOP)

Aerogel radiator

Hamamatsu HAPD
+ new ASIC

200mm

n~1.05

Endcap PID: Aerogel RICH (ARICH)

200

Belle II Cherenkov detectors

Quartz radiator Focusing mirror
Small expansion block
Hamamatsu MCP-PMT (measure t, x and y)
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Similar to DIRC, but instead of two coordinates measure: 
– One (or two coordinates) with a few mm precision
– Time-of-arrival
 Excellent time resolution < 100ps (incl. read-out)

required for single photons in 1.5T B field

Time-Of-Propagation (TOP) counter

Hamamatsu 
SL10 MCP-PMT

 talks by K. Matsuoka, K. Inami, G. Varner
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Pattern in the coordinate-
time space (‘ring’) of a 
pion and a kaon hitting a 
quartz bar

Time distribution of signals 
recorded by one of the 
PMT channels: different for 
π and K (~shifted in time)

TOP counter: principle
of operation
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TOP beam test vs MC
Pattern in the coordinate-time space (‘ring’): eight replicas of the time vs 
channel coordinate pattern, one of each pixel row.
Very good agreement between beam test data and MC simulated patterns.

coordinate (channels)

tim
e
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ha

nn
el

s)

Recorded by the CFD-based read-out.

data MC

coordinate (channels)
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e
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DIRC counters for PANDA (FAIR, GSI)

Two DIRC-like counters are under preparation for the PANDA 
experiment



Peter Križan, Ljubljana

PANDA barrel DIRC

Barrel-DIRC

 Talk by J. Schwiening
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PANDA endcap DIRC

Endcap Disc DIRC

 Talk by J. Schwiening
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LHCb PID upgrade: TORCH
A special type of Time-of-Propagation 
counter for the LHCb upgrade

 talk on photosensor R+D by P. Kapetanopoulos
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MCP PMTs ageing
MCP PMT ageing: a serious problem in most of the planned aplications.

Cures:
• Better cleaning of the MCPs, better vacuum
• Al foil between PC and first MCP
• Al foil between two MPC stages
• Atomic layer deposition (ALD)

ions
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MCP PMTs ageing, cure
Photek, ALD deposition

No drop in QE after 5 C/cm2

Photo current drop due to a reduced 
gain (microchannel plate ageing)
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MCP PMTs ageing, cure

Hamamatsu, ALD deposition

No drop in QE after 7.4 C/cm2
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Aging study by A. Lehmann et al (for the 
Panda DIRC) 

 Talk by J. Schwiening

 ALD is the name 
of the game
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ALD for MCP PMTs: born in Chicago area.
ALD can turn a borosilicate glass substrate into an MCP 
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LAPPD – Large Area Picosecond Photon Detector
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Peter Križan, Ljubljana Extremely important development, many talks in this workshop
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Hybrid photodetectors
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Hybrid photodetector: LHCb RICHes
Photon detector: hybrid PMT (R+D with DEP) with 5x demagnification 
(electrostatic focusing).
Hybrid PMT: accelerate photoelectrons in electric field (~20kV), detect it in a 
pixelated silicon detector. 

NIM A553 (2005) 333
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LHCb Event Display

RICH 1LHCb data
(preliminary)

Kaon ring

RICH 2LHCb data
(preliminary)

Kaon ring

 Orange points  photon hits
 Continuous lines  expected distribution 

for each particle hypothesis 

RICH2RICH1 Early data, Nov/Dec 2009
LHC beams √s = 900 GeV

F. Muheim, RICH 2010
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LHCb RICHes: performance

Efficiency and purity from data 
excellent agreement with MC

D from D*

φ

Λ

KS

N. Harnew, Beauty 2011
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Aerogel radiator Hamamatsu HAPD + readout

Barrel PID: Time of Propagation Counter (TOP)

Aerogel radiator

Hamamatsu HAPD
+ new ASIC

200mm

n~1.05

Endcap PID: Aerogel RICH (ARICH)

200

Belle II Cherenkov detectors

Quartz radiator Focusing mirror
Small expansion block
Hamamatsu MCP-PMT (measure t, x and y)
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Aerogel

Hamamatsu HAPD
Q.E. ~33% (recent good ones)

Clear Cherenkov image observed

Aerogel RICH

Test Beam setup

6.6 σ p/K at 4GeV/c !

Need: 
Operation in 1.5 T magnetic field 
Pad size ~5-6mm

Photosensor: large active area HAPD of 
the proximity focusing type 

 NIM A595 (2008) 180

Aerogel radiator

Hamamatsu HAPD
+ new ASIC

200mm

n~1.05

Endcap PID: Aerogel RICH (ARICH)
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ARICH photon detector: HAPD

~20mm

Super Bialkali
photocathode photon

photoelectron

multi-channel APD

Hybrid avalanche photo-detector developed in cooperation with 
Hamamatsu Photonics K.K. (proximity focusing configuration):
● 12 x12 channels (~ 5 x 5 mm2)
● size ~ 72 mm x 72 mm
● ~ 65% effective area
● total gain > 4.5x104 (two steps:
bombardment > 1500, avalanche > 30)
● detector capacitance ~ 80pF/ch.
● super bialkali photocatode,
typical peak QE ~ 28% (> 24%)
● works in mag. field (~ perpendicular
to the entrance window)

3
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HAPD QE
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● peak QE improved by Hamamatsu with super bialkali photocathode:
25% → >30%
● typically QE is somewhat lower at the edges of the HAPD

Uniformity
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HAPD performance @ B=0T
1ph. 2ph.

3ph.

4ph.

...

0ph.

● excellent photon counting affected only by 
photo-electron back-scattering → high single 
photon counting efficiency
● sharp transition between channels
● image distortion due to a non-uniform 
electric field at the edges
● back-scattering induced cross-talk
● optical cross-talk by reflection from APD 
surface → weak echo ring

Illumination at an angle
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Ring image, background contributions (B=0T)

aerogel

200 mm
20 mm

photoelectron

Cherenkov light reflected
from APD surface

Cherenkov light

Photoelectron
backscattering

photon

Cherenkov light
from window
Internal reflections

window photocathode APD

Ways to improve: 
● The amount of window light can be reduced by 
a thinner window
● Effects of photoelectron backscattering 
disappears in magnetic field
● Reflected light: higher QE, more absorption 
In the first pass
● Anti-reflective coating?
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HAPD: operation in 1.5 T
Tests in 1.5 T magnetic field show
improved HAPD performance:
• no photoelectron back-scattering
cross-talk
• increase of detection efficiency –
photoelectron energy deposited at
one place
• effect of non-uniformity of electric 
field disappears

0T 1.5T
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Test in magnetic field 1.5 T
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photon

photo-electron

anode

photocathode

photon

photo-electron

dual MCP

anode

photon

photo-electron photocathode

window

Si sensor with pads

metal dynode 
structure

Photo-electron backscattering, light reflection 
from the APD etc

Similar geometries in the 
photo-electron step
 A lot of similarities
between prox. focusing 
HAPD, MCP PMTs and MA-
PMTs
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SiPM as photon detector?
Can we use SiPM (Geiger mode APD) as the photon 
detector in a RICH counter?
+immune to magnetic field
+high photon detection efficiency, single photon sensitivity
+easy to handle (thin, can be mounted on a PCB)
+potentially cheap (not yet...) silicon technology
+no high voltage

-very high dark count rate (100kHz – 1MHz) with single 
photon pulse height
-radiation hardness
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Hamamatsu MPPC: S10362-11

SiPM is an array of APDs operating in Geiger 
mode. Characteristics:
 low operation voltage ~ 10-100 V 
 gain ~ 106 

 peak PDE up to 65%(@400nm)
PDE = QE x εgeiger x εgeo

 εgeo – dead space between the cells
 time resolution ~ 100 ps
 works in high magnetic field
 dark counts ~ few 100 kHz/mm2 

 radiation damage (p,n)

050U

100U

025U 

SiPMs as photon detectors?

1 mm
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Can such a detector work?
Improve the signal to noise ratio:
•Reduce the noise by a narrow (<10ns) time window 
•Increase the number of signal hits per single sensor by using 
light collectors and by adjusting the pad size to the ring 
thickness
E.g. light collector with reflective walls

SiPM

or combine a lens 
and mirror walls

PCB
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1mm

2.5mm

4.3mm

10o

SiPM array with light guides

Detector module design
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SiPMs: array of 8x8 SMD mount Hamamatsu S10362-11-100P
with 0.3mm protective layer

64 SiPMs

20
m

m

Photon detector with SiPMs 
and light guides 

Korpar et al., NIM A613 (2010) 195

Full ring in a pion beam
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A new SiPM device
Array of SiPMs: Hamamatsu MPPC S11834-3388DF
• A novel type of a multi-pixel Photon Counter (MPPC) 
• 8x8 SiPM array, with 5x5 mm2 SiPM channels
• Active area 3x3 mm2

• Cell size: 50 μm
• Rather low dark count rate (~100 kHz/mm2)
• Operating voltage: (70 ± 10) V
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Detector module
Consists of the MPPC, light 
concentrator and support

Measured gain: ~3.5 x 105 @ 72.8 V
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Beam test – light guide performance

with 
light guides 

no 
light guides 
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SiPM: time resolution for single photons

Analog SiPMs: typically 80 ps (sigma), 200 ps FWHM
Digital SiPMs: main peak 48 ps (sigma)!

Very fast analog SiPM Digital SiPM
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New player: digital dSiPM
DPC: Front-end Digitization by Integration of SPAD & CMOS Electronics 

T. Frach, G. Prescher, C. Degenhardt, B. Zwaans, IEEE NSS/MIC (2010) pp.1722-1727
C. Degenhardt, T. Frach, B. Zwaans, R. de Gruyter, IEEE NSS/MIC (2010) pp.1954-1956
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dSiPM in beam tests

Sergey Kononov VCI 2013
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Expected fluence at 50/ab at 
Belle II:        2-20 1011 n cm-2

 Worst than the lowest line

Radiation damage

Very hard to use present SiPMs as single photon detectors in many 
applications (including Belle II) because of radiation damage by neutrons

 Also: could only be used with a sofisticated electronics – wave-form 
sampling  
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Time-of-Flight difference of annihilation gammas is used to improve the 
contrast of images obtained with PET:
- localization of source position on the line of response
- reduction of coincidence background
- improvement of S/N

Novel photon detectors – MCP-PMT and SiPM – have excellent timing 
resolution → TOF resolution limited by the scintillation process

Cherenkov light is promptly produced by a charged
particle traveling through the medium with velocity 
higher than the speed of light c0/n. 
Disadvantage of Cherenkov light is a small number of 
Cherenkov photons produced per interaction → 
detection of single photons!

New possibilities in medical imaging: 
TOFPET with Cherenkov light
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Two detectors in a back-to-back configuration with 25x25x15 mm3 crystals 
coupled to MCP-PMT with optical grease.

TOF-PET with Cherenkov light

 NIM A654(2011)532–538

5 mm long crystal: 
 FWHM ~ 70 ps

 Talk by P. Križan - tomorrow
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Summary

• Single photon detection is at the hearth of the RICH detectors

• New methods require very fast timing in radiation harsh 
environments

• A number of new detectors has been developed recently to 
cope with these requirements

• A very active field!

• My talk can only be seen as a warming up – there will be 
several very interesting presentation on recent results!
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Back-up slides



Peter Križan, Ljubljana

Light guide geometry optimisation
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Gain as a function of magnetic field for different operation voltages
and as a function of applied voltage for different magnetic fields.
.
.

MCP PMT: Gain in magnetic field

High B field: no problem, to run at 
the same gain HV  +200V

In the presence of magnetic field, charge sharing and cross talk due to 
long range photoelectron back-scattering are considerably reduced.   
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E407 S137 H100C H050C H025C
 σred (ps) 127 182 145 212 154
σblue (ps) 97 151 136 358 135

Time resolution

• σ ≈ 100 ps • σred > σblue

Time resolution: blue vs red

E407

time(ps)time(ps)
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Neutron irradiation

Neutron fluence
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Neutron damage
Modification of APD structure:
- Thinner p layer to reduce increase of the leakage 
current after irradiation – main source of leakage 
current are thermally generated electrons in p layer 
due to the lattice defects produced by neutrons
- Thinner p+ layer to increase bombardment gain

As expected, the 
increase of the 
leakage current is 
smaller with thin p

S/N for thin p sample 
is better than 7 after 
fluence 1012n/cm20
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Gamma irradiation
60Co irradiation facility @ Nagoya U.

● Expected total dose 100-1000 Gy
● Initial tests indicated fast raise of leakage current 
and reduction of breakdown voltage – not 
previously observed with similar APDs
● Possible source: APD for HAPD had additional 
alkali protection layer to protect APD during 
photocathode activation process
● To identify the reason extensive tests were 
done with single channel APDs with different 
structure prepared by Hamamatsu:
●“Standard” alkali protection
●No alkali protection
●“New” alkali protection

→ APD structure had to be optimized
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Neutron irradiation (nonionizing energy loss):
modification of APD internal structure to increase S/N 
after irradiation:
● reduced p layer thickness → reduced leakage current
● reduced p+ layer → increased bombardment gain

Gamma irradiation (ionizing radiation):
modifications to avoid charge-up efects:
● optimization of protective films
● additional intermediate electrode
● no alkali protection layer
irradiated HAPDs showed comparable results to 
non-irradiated samples in a beam test

Optimized APD structure
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Ageing test - setup
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Ageing test - QE measurement
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