





















For the constant of the term with a cos(Δmt) time dependence.  

$$P(B \rightarrow f_{CP};t) = \frac{e^{-|t|/\tau_B}}{4\tau_B} [1+q \cdot \{A \cos(\Delta mt) \\ \text{with } q=\pm 1 \\ \text{If integrated over all times (-inf,+inf), the asymmetry with the sin(Δmt) term vanishes, while the term with cos(Δmt) remains.}$$
In the term value of the term with cos(Δmt) term vanishes, while the term with cos(Δmt) term vanishes, while the term with cos(Δmt) term vanishes.











| Enterna Importa                                                                                                                                                                                                                                                               | ance of direct CP                                            | / in B decays                    |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|--|--|--|--|
| "The final, complete<br>theory will come<br>violation in the B                                                                                                                                                                                                                | etely definitive death c<br>from the observation c<br>system | of any superweak<br>of direct CP |  |  |  |  |
| Evidence for such direct CP violation would be given by<br>the difference between the asymmetry parameters in a<br>decay such as $B \rightarrow \pi^+ \pi^-$ from that of $B \rightarrow J/\psi K_s$ . This can<br>be considered the $\epsilon$ experiment for the B system." |                                                              |                                  |  |  |  |  |
| Lincoln Wolfenstein, 1999                                                                                                                                                                                                                                                     |                                                              |                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                               |                                                              |                                  |  |  |  |  |
| January 4, 2006                                                                                                                                                                                                                                                               | University of Mainz                                          | Peter Križan, Ljubljana          |  |  |  |  |























| BLE I: Results of the                                                                                                                                                                 | e best fit to $K^{\pm}\pi^{\pm}$<br>uncertainty. The | $L^{\mp}$ events in the<br>quoted $A_{CP}$ signi | B signal region. The<br>ficance is statistical of | first quoted e            | rror is statistical and the      | second |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------|----------------------------------|--------|
| Channel                                                                                                                                                                               | Fraction (%)                                         | δ (°)                                            | b                                                 | φ (°)                     | $A_{CP}$ significance $(\sigma)$ |        |
| $K^{*}(892)\pi^{\pm}$                                                                                                                                                                 | $13.0 \pm 0.8^{+0.5}_{-0.7}$                         | 0 (fixed)                                        | $0.078 \pm 0.033^{+0.012}_{-0.003}$               | $-18 \pm 44^{+5}_{-13}$   | 2.6                              |        |
| $K_0^*(1430)\pi^{\pm}$                                                                                                                                                                | $65.5 \pm 1.5^{+2.2}_{-3.9}$                         | $55 \pm 4^{+1}_{-5}$                             | $0.069 \pm 0.031^{+0.010}_{-0.008}$               | $-123 \pm 16^{+4}_{-5}$   | 2.7                              |        |
| $\rho(770)^{0}K^{\pm}$                                                                                                                                                                | $7.85 \pm 0.93^{+0.64}_{-0.59}$                      | $-21 \pm 14^{+14}_{-19}$                         | $0.28 \pm 0.11^{+0.07}_{-0.09}$                   | $-125 \pm 32^{+10}_{-85}$ | 3.9                              |        |
| $\omega(782)K^{\pm}$                                                                                                                                                                  | $0.15 \pm 0.12^{+0.03}_{-0.02}$                      | $100 \pm 31^{+38}_{-21}$                         | 0 (fixed)                                         | -                         | -                                |        |
| $f_0(980)K^{\pm}$                                                                                                                                                                     | $17.7 \pm 1.6^{+1.1}_{-3.3}$                         | $67 \pm 11^{+10}_{-11}$                          | $0.30 \pm 0.19^{+0.05}_{-0.10}$                   | $-82 \pm 8^{+2}_{-2}$     | 1.6                              |        |
| $f_2(1270)K^{\pm}$                                                                                                                                                                    | $1.52 \pm 0.35^{+0.22}_{-0.37}$                      | $140 \pm 11^{+18}_{-7}$                          | $0.37 \pm 0.17^{+0.11}_{-0.04}$                   | $-24 \pm 29^{+14}_{-20}$  | 2.7                              |        |
| $f_X(1300)K^{\pm}$                                                                                                                                                                    | $4.14 \pm 0.81^{+0.31}_{-0.30}$                      | $-141 \pm 10^{+8}_{-9}$                          | $0.12 \pm 0.17^{+0.04}_{-0.07}$                   | $-77 \pm 56^{+88}_{-43}$  | 1.0                              |        |
| Non-Res.                                                                                                                                                                              | $34.0 \pm 2.2^{+2.1}_{-1.8}$                         | $\delta_1^{nr} = -11 \pm 5^{+3}_{-3}$            | 0 (fixed)                                         | -                         | -                                |        |
|                                                                                                                                                                                       | 10.24                                                | $\delta_2^{nr} = 185 \pm 20^{+02}_{-19}$         |                                                   | 154                       |                                  |        |
| $\chi_{c0}K^{\pm}$                                                                                                                                                                    | $1.12 \pm 0.12^{+0.24}_{-0.08}$                      | $-118 \pm 24^{+37}_{-38}$                        | $0.15 \pm 0.35 \substack{+0.08\\-0.07}$           | $-77 \pm 94^{+134}_{-11}$ | 0.7                              |        |
|                                                                                                                                                                                       | $A_{CP}(B^{\pm}$ -                                   | $\rightarrow \rho^0 K^{\pm}$                     | $0 = 0.28 \pm 0$                                  | $0.10^{+0.07}_{-0.09}$    | (3.9σ)                           |        |
| Significance varies from $3.7\sigma$ to $4.0\sigma$ depending on the model for the resonant substructure (add or remove modes, change nr model, cpv in b $\rightarrow$ u background). |                                                      |                                                  |                                                   |                           |                                  |        |
|                                                                                                                                                                                       |                                                      |                                                  |                                                   |                           |                                  |        |















































![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_36_Figure_1.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

|                                                                                                                                                                                                                                                                                                         | Time evolution of B's                                        |                                        |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|--|--|--|--|--|
| Time evolution:<br>$ \left  B^{0}_{phys}(t) \right\rangle = g_{+}(t) \left  B^{0} \right\rangle + (q/p)g_{-}(t) \left  \overline{B}^{0} \right\rangle $ $ \left  \overline{B}^{0}_{phys}(t) \right\rangle = (p/q)g_{-}(t) \left  B^{0} \right\rangle + g_{+}(t) \left  \overline{B}^{0} \right\rangle $ |                                                              |                                        |  |  |  |  |  |
| wit                                                                                                                                                                                                                                                                                                     | h $g_{+}(t) = e^{-iMt}e^{-1}$<br>$g_{-}(t) = e^{-iMt}e^{-1}$ | $\int \frac{dr}{dt} \cos(\Delta mt/2)$ |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                         | M = (N                                                       | 1 <sub>H</sub> +M <sub>L</sub> )/2     |  |  |  |  |  |
| January 4, 2006                                                                                                                                                                                                                                                                                         | University of Mainz                                          | Peter Križan, Ljubljana                |  |  |  |  |  |

![](_page_40_Figure_0.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_44_Figure_1.jpeg)