

Univerza v Ljubljani

SiPMs as detectors of Cherenkov photons

Peter Križan University of Ljubljana and J. Stefan Institute

Light07, September 26, 2007

September 26, 2007

Light07, Ringberg castle

Peter Križan, Ljubljana

Contents

Photon detection for Ring Imaging CHerenkov counters

- Can G-APDs (SiPMs) do the job?
- Light collection

Bench tests of surface sensitivity, timing, external optical cross talk

Test set up for cosmic rays

Summary

Measuring Čerenkov angle

From hits of individual photons \rightarrow measure the angle.

Few photons detected

→Important to have a low noise detector

Light07, Ringberg castle

Peter Križan, Ljubljana

Photon detection in RICH counters

RICH counter: measure photon impact point on the photon detector surface

- \rightarrow detection of <u>single</u> photons with
- sufficient spatial resolution
- high efficiency and good signal-to-noise ratio
- over a large area (square meters)

Special requirements:

- Operation in magnetic field
- High rate capability
- Very high spatial resolution
- Excellent timing (time-of-arrival information)

Hot topics in photon detection for RICHes

For: super B factories

- Belle PID upgrade
- DIRC (BaBar) upgrade

Single photon detection with: <u>Operation in high magnetic field (1.5T)</u> <u>Excellent timing (time-of-arrival information)</u>

Focusing DIRC

Upgrade: remove the stand-off box \rightarrow focusing DIRC

Use time of arrival to (partly) correct for the cromatic dispersion

Need:

- •Pad size ~5mm
- •Time resolution ~50-100ps

Belle upgrade – side view

Endcap: Proximity focusing RICH

 \rightarrow 5 σ separation with N_{pe}~10

Beam tests

pion beam (π 2) at KEK

Photon detector: array of 16 H8500 (flat pannel) PMTs

September 26, 2007

Light07, R

Clear rings, little background

Beam test: Cherenkov angle resolution and number of photons

NIM A521(2004)367; NIM A553(2005)58

Beam test results with 2cm thick aerogel tiles: >4 σ K/ π separation

 \rightarrow This photon detector does not work in magnetic field

September 26, 2007

Light07, Ringberg castle

Photon detectors for the aerogel RICH

Photon detector candidates for 1.5T:

- BURLE 85011 microchannel plate (MPC) PMT → talk by Samo Korpar tomorrow
- Multichannel H(A)PD R+D with Hamamatsu
- SiPM (G-APD)

SiPMs for the aerogel RICH – the group

R. Dolenec, S. Korpar, P. Križan, A. Petelin, R. Pestotnik J. Stefan Institute, Ljubljana, Slovenia University of Ljubljana, Slovenia University of Maribor, Slovenia

> K. Hara, T. Iijima, Y. Mazuka, M. Yamaoka Nagoya University, Nagoya, Japan

SiPM as photon detector?

Can we use SiPM (Geiger mode APD) as the photon detector in a RICH counter?

+immune to magnetic field

+high photon detection efficiency, single photon sensitivity

+easy to handle (thin, can be mounted on a PCB)

+potentially cheap (not yet...) silicon technology

+no high voltage

-very high dark count rate (100kHz – 1MHz) with <u>single</u> <u>photon pulse height</u>

Ring on a uniform background

Can such a detector work?

HERA-B RICH experience:

 \leftarrow Little noise, ~30 photons per ring

Typical event \rightarrow

50

Worked very well!

Need >20 photons per ring for a reliable PID.

Can such a detector work?

Improve the signal to noise ratio:

- •Reduce the noise by a narrow (<10ns) time window
- •Increase the number of signal hits per single sensor by using light collectors and by adjusting the pad size to the ring thickness

Light collector with reflective walls

or combine a lens and mirror walls

September 26, 2007

PCB

SiPM

Light07, Ringberg castle

Can such a detector work?

MC simulation of the counter response: assume 1mm² active area SiPMs with 0.8 MHz (1.6 MHz, 3.2 MHz) dark count rate, 10ns time window. Vary light collector demagnification (=pad size).

K identification efficiency at 1% π missid. probability

 \rightarrow Looks OK!

Bench tests set up

•Light sources: pulsed pico-second lasers (404nm and 653nm) with $\sigma\approx 5~\mu m$ spot size

•SiPMs mounted on a PC controled 2d stage, min. step 1 μm

Bench tests: sensors

- •Mephi: E407
- •CPTA (Photonique): S137
- •Hamamatsu MPPCs: H100C, H050C, H025C

producer data

sensor	size (mm ²)	pixels	pixel size (µm)	A _{pixel} / A _{total}	highest PDE	dark counts
E407	1.2	1156	33	_	-	_
S137	1	556	43	-	-	-
H100C		100	100	78.5 %	65 %	372 kHz
H050C	1	400	50	61.5 %	50 %	232 kHz
H025C		1600	25	30.8 %	25 %	104 kHz

September 26, 2007

Light07, Ringberg castle

Peter Križan, Ljubljana

Pulse height spectra

Can we distinguish single photon counts from multiple ones?

Given the narrow pulse-height distributions in the spectrum, how well can distinguish a single photon hit from a multi-photon hit?

Surprisingly enough, the answer is not as well as the spectrum form suggests.

Reason: photon feed-back.'2 photon' peak is actually:1 photon + feed-back and2 photons + no feed-back

 \rightarrow Have to be carefull when advertizing the pulse height spectra

- 2d scan in the focal plane of the laser beam ($\sigma \approx 5 \ \mu$ m)
- intensity: on average << 1 photon
- Selection: single pixel pulse height, in TDC 10 ns window

E407

H050C

H025C

H100C

Time resolution: time walk correction

<< 1 photon

ADC window 10^{4} 120 140 ADC kanali time(ps) corrected TDC QL TDC Р1 Р2 Р3 Zadetki ID Entries 10 2 PI1711. P21375. P3100.6 ADC Cas (ps)

September 26, 2007

Light07, Ringberg castle

uncorrected TDC

Time resolution: blue vs red

External secondary photon cross talk

Worry: light emitted by SiPM can be reflected back to the photon detector surface

SiPM photon detector

hit channel with a secondary photon

Light07, Ringberg castle

External secondary photon cross talk

Scan a SiPM in front of a second one, observe coincidence rate

SiPM A and B: Hamamatsu MPPCs

stle

External secondary photon cross talk Coincidence hits 3.6 3.4 3.2 3 [ZHX] 2.8 N 2.6 2.4 2.2 2 7 -3 -1 з 5 single detector dark rate ~ 200 kHz SiPM A Position [mm]

- •coincidence background ~ 2.4 kHz
- •when SiPMs overlap, coincidence rate increases by ~1 kHz
- •1mm active area 1mm away ~ 15% of 2π solid angle
- •full (2π) solid angle: 1kHz/(2 x 200kHz) /15% ~ **2%**

 \rightarrow OK (even with an assumption of a 100% reflectivity of the radiator surface \rightarrow gets reduced by two further orders of magnitude)

Light guides

- Effective increase of the active surface
- Improvement of the signal/noise ratio (collecting more signal photons for fixed dark count rate)

Efficiency vs. angle of incidence α

Light guide	d/a	R/a	α_{min} , α_{max}	I(-60°, 60°)
Planar entry	3.4	-	-24°, 24°	64%
Sph. entry	1.6	2.0	-35°, 35°	66%
Reflective sides	2.4	2.6	-44°, 44°	69%

September 26, 2007

Light07, Ringberg castle

Peter Križan, Ljubljana

Light collection: required angular range

Peter Križan, Ljubljana

Design with a two light guide types

Tests with cosmic rays

Photon detector:

- Array of 6 SiPMs
- •Array of 12 R5900-M16 PMTs as reference

Set-up runs well, waiting for statistics to accumulate

→will have results ready for RICH07 and IEEE/NSS 2007

Summary

RICH counters of the next generation: new challenges, operation in high magnetic field with excellent timing Several photon detectors are being studied SiPMs (G-APDs) look like a viable candidate Needed: light guides and operation with a well defined time window

Still some work to do...

- Read-out electronics
- Light guide + sensor integration
- Radiation hardness studies

We also work on a PET module...

Test a PET module with: 4x4 array of LYSO crystals (4.5 x 4.5 x 20(30) mm³) 16 SiPMs (Photonique 2.1x2.1 mm²)

Light07, Ringberg castle

We also work on a PET module 2

