

KEK FF workshop, March 14, 2013

Belle II status

Peter Križan University of Ljubljana and J. Stefan Institute

University of Ljubljana

"Jožef Stefan" Institute

Contents

•Physics case for Belle II

\rightarrow talks of this workshop

Accellerator – SuperKEKB

•Detector – Belle II

•Status and prospects

B factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau v$, $D \tau v$)
- b→s transitions: probe for new sources of CPV and constraints from the b→sγ branching fraction
- Forward-backward asymmetry (A_{FB}) in b→sl+l⁻ has become a powerfull tool to search for physics beyond SM.
- Observation of D mixing
- Searches for rare τ decays
- Observation of new hadrons

Possible also because of unique capabilities of B factories: detection of neutrals, neutrinos, clean event environment.

Power of e⁺e⁻, example: Full Reconstruction Method

- Fully reconstruct one of the B mesons to
 - Tag B flavor/charge
 - Determine B momentum
 - Exclude decay products of one B from further analysis

→ Offline B meson beam!

Powerful tool for B decays with neutrinos

Complementary to LHCb

Observable	Expected th.	Expected exp.	Facility	
	accuracy	uncertainty		
CKM matrix				
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory	
$ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II	
$ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II	
$\sin(2\phi_1) \left[c\bar{c}K_S^0\right]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb	
ϕ_2		1.5°	Belle II	
ϕ_3	***	3°	LHCb	
CPV				
$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb	
$S(B_s o \phi \phi)$	**	0.05	LHCb	
$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb	
$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II	cupo
$S(B_d \rightarrow K^*(\rightarrow K^0_S \pi^0)\gamma))$	***	0.03	Belle II	Super
$S(B_s \rightarrow \phi \gamma))$	***	0.05	LHCb	- 11
$S(B_d \rightarrow \rho \gamma))$		0.15	Belle II	all as
A_{SL}^d	***	0.001	LHCb	
A_{SL}^s	***	0.001	LHCb	flavo
$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle II	
rare decays				
$\mathcal{B}(B \to \tau \nu)$	**	3%	Belle II	
$B(B \rightarrow D\tau\nu)$		3%	Belle II	
$\mathcal{B}(B_d \rightarrow \mu \nu)$	**	6%	Belle II	
$\mathcal{B}(B_s \rightarrow \mu \mu)$	***	10%	LHCb	
zero of $A_{FB}(B \rightarrow K^* \mu \mu)$	**	0.05	LHCb	
$\mathcal{B}(B \to K^{(*)}\nu\nu)$	***	30%	Belle II	
$\mathcal{B}(B \rightarrow s\gamma)$		4%	Belle II	
$B(B_s \rightarrow \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab ⁻¹)	
$B(K \rightarrow \pi \nu \nu)$	**	10%	K-factory	
$\mathcal{B}(K \to e \pi \nu) / \mathcal{B}(K \to \mu \pi \nu)$	***	0.1%	K-factory	
charm and τ				
$\mathcal{B}(au o \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II	📕 B. Gold
$ q/p _D$	***	0.03	Belle II	
$arg(q/p)_D$	***	1.5°	Belle II	Feb. 20

→Need both LHCb and super B factories to cover all aspects of precision flavour physics

B. Golob, KEK FF Workshop, Feb. 2012

Accelerators

Need 50x more data →Next generation B-factories

The KEKB Collider & Belle Detector

Strategies for increasing luminosity

Collision with very small spot-size beams

Invented by Pantaleo Raimondi for SuperB

Machine design parameters

noromotoro		KE	KB	Super	unita			
parameters		LER	HER	LER	HER	units		
Beam energy	Eb	3.5	7	GeV				
Half crossing angle	φ	1	1	41	.5	mrad		
Horizontal emittance	٤x	18	24	3.2	4.6	nm		
Emittance ratio	κ	0.88	0.66	0.37	0.40	%		
Beta functions at IP	β_x^*/β_y^*	1200)/5.9	32/0.27	25/0.30	mm		
Beam currents	l _b	1.64	1.19	3.60	2.60	А		
beam-beam parameter	ξy	0.129	0.090	0.0881	0.0807			
Luminosity	L	2.1 x	10 ³⁴	8 x	10 ³⁵	cm ⁻² s ⁻¹		

• Nano-beams and a factor of two more beam current to increase luminosity

- Large crossing angle
- Change beam energies to solve the problem of short lifetime for the LER

Super

[SR Channel] [Beam Channel]

Entirely new LER beam pipe with ante-chamber and Ti-N coating

Fabrication of the LER arc beam pipe section is completed

Al ante-chamber before coating

After TiN coating before baking

After baking

All 100 4 m long dipole magnets have been successfully installed in the low energy ring (LER)!

Three magnets per day !

Installing the 4 m long LER dipole **over** the 6 m long HER dipole (remains in place).

Magnet installation

field measurement

Installation of 100 new LER bending magnets done

move into tunnel

carry on an air-pallet

SuperKEKB Status, 7th BPAC, Mar. 11, 2013, K. Akai

carry over existing HER dipole

16

Wiggler sections

Upgrade of RF system to cope with twice beam currents and 2.5 times beam power

RF high power system

1.2MW CW kystron

Superconducting cavities SuperKEKB Status, 7th BPAC, Mar. 11, 2013, K. Akai

Super

- Tunnel construction under way in 2012-13; half year delay due to budget suspend caused by the earthquake.
- Construction of buildings for DR will start in April this year.
- Fabrication of accelerator components ongoing. Installation starts in 2014.
- DR commissioning will start in 2015.

Inside DR tunnel

SuperKEKB Status, 7th BPAC, Mar. 11, 2013, K. Akai

IR magnets overview

Super

KEKB

<u>ð</u>-

Detector

Need to build a new detector to handle higher backgrounds

Critical issues at L= 8 x 10^{35} /cm²/sec

- Higher background (×10-20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Have to employ and develop new technologies to make such an apparatus work!

 \rightarrow

TDR published arXiv:1011.0352v1 [physics.ins-det]

Belle II Detector

Belle II Detector (in comparison with Belle)

Belle II Detector – vertex region

Vertex Detector

DEPFET: http://aldebaran.hll.mpg.de/twiki/bin/view/DEPFET/WebHome

DEpleted P-channel FET

- All the ASICs + Belle II DEPFET working together
- Trigger-less zero suppression readout

SVD Mechanical Mockup

Gearing up for ladder production!

M.Friedl (HEPHY Vienna): SVD Status and Prospects

11 March 2013

Belle II CDC

Much bigger than in Belle!

Wire stringing in a clean room

- thousands of wires,
- 1 year of work...

photon detector.

Aerogel RICH (endcap PID)

RICH with a focusing radiator

Increases the number of photons without degrading the resolution

Barrel PID: Time of propagation (TOP) counter

- Cherenkov ring imaging with precise time measurement.
- Device uses internal reflection of Cerenkov ring images from quartz like the BaBar DIRC
- Reconstruct Cherenkov angle from two hit coordinates and the time of propagation of the photon
 - Quartz radiator (2cm)
 - Photon detector (MCP-PMT)
 - Good time resolution ~ 40 ps
 - Single photon sensitivity in 1.5 T field
 - Hamamatsu SL10

TOP image

Pattern in the coordinate-time space ('ring') of a pion hitting a quartz bar with ~80 MAPMT channels

Time distribution of signals recorded by one of the PMT channels: different for π and K (~shifted in time)

EM calorimeter: upgrade needede because of higher rates (barrel: electronics, endcap: electronics and $CsI(TI) \rightarrow pure CsI$) and radiation load (endcap: CsI(TI) \rightarrow pure CsI)

- Belle II can get advantage in π^0 and soft photon-detection efficiency and resolution in comparison with LHCb experiment
- Modify electronics for the barrel.
- Pipe-line readout with waveform analysis:
- 16 points within the signal are fitted by the signal function F(t):

$$F(t) = A f(t - t_0)$$

A - amplitude of the signal and t_0 – time of the signal,

$$\chi^{2} = \sum (y_{i} - A f(t_{i} - t_{0})) S_{ij}^{-1} (y_{i} - A f(t_{i} - t_{0}))$$

- Both amplitude and time information are reconstructed:
- Next stage: Replace the CsI(Tl) by the pure CsI crystals in endcaps.

Detection of muons and KLs: Parts of the present RPC system have to be replaced to handle higher backgrounds (mainly from neutrons).

Background event display

Neutrons: background hits in the muon and KL detection system (KLM) \rightarrow reduce the efficiency of muon and KL detection \rightarrow replace RPCs in the endcaps and 2 barrel layers.

Muon detection system upgrade

Scintillator-based KLM (endcap and 2 barrle layers)

- Two independent (x and y) layers in one superlayer made of orthogonal strips with WLS read out
- Photo-detector = avalanche photodiode in Geiger mode (SiPM)
- ~120 strips in one 90^o sector y-strip (max L=280cm, w=25mm) plane ~30000 read out channels Geometrical acceptance > 99% Iron plate x-strip plane Mirror 3M (above groove & at fiber end) Optical glue increases the Aluminium frame light yield by $\sim 1.2-1.4$) WLS: Kurarai Y11 Ø1.2 mm GAPD Diffusion reflector (TiO₂) Strips: polystyrene with 1.5% PTP & 0.01% POPOP

Status of the project

The Belle II Collaboration

A very strong group of ~480 highly motivated scientists!

SuperKEKB/Belle II Status

5

Funding

- ~100 MUS for machine approved in 2009 -- Very Advanced Research Support Program (FY2010-2012)
- Full approval by the Japanese government in December 2010; the project was finally in the JFY2011 budget as approved by the Japanese Diet end of March 2011
- Most of non-Japanese funding agencies have also already allocated sizable funds for the upgrade of the detector.

 \rightarrow construction started in 2010!

Fortunately little damage during the March 2011 earthquake \rightarrow no delay

Ground breaking ceremony in November 2011

SuperKEKB and Belle II construction proceeds according to the schedule.

SuperKEKB/Belle II Status - 2

Bad news

• SuperB was canceled – we are left without one of our competitors

Good news

- Some of the SuperB collaborators have decided to join (or are seriously considering to join)
- Canadian groups members since last week
- Discussions with Italian, French and Mexican institutions

SuperKEKB/Belle II schedule

SuperKEKB Commissioning Scenario

Commissioning in three phases:

- Phase 1: w/o final quads, w/o Belle II
 - basic machine tuning
 - low emittance beam tuning
 - vacuum scrubbing
 - At least one month at beam currents of 0.5~1A.
 - Damping ring commissioning
- Phase 2: with final quads and Belle II, but no VXD
 - low beta* beam tuning
 - small x-y coupling tuning
 - collision tuning
 - study beam background
 - careful checks beam background before VXD installation.
- Phase 3: with QCS and full Belle II
 - physics run
 - luminosity increase

Commissioning schedule

Fiscal Year			FY2014 FY2015													FY2016																			
Calendar Year									CY2015												CY2016														
Month		10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	1 1	2	1 2	з	4	6	7	8	9
Jeep Way (2)	_	Ú –				Pha	se 1			Summer shutdown				mmer shutdown			Phase 2					Summer shutdown			wn				Phase 3					mer shu	shutdown
Commissioning					No Q	CS No	Soler	noid									QCS w/ Solenoid (w/o			aid (w/o VXC									Physics Run						
Belle II solenoid	Roll In										In						lumine	osity t	uning							detector	tunin	g							
QCS	Installation/ dis	mantien	nent						_					_						4	_				_				_					_	
QCS	Cooling test																						-												
QCS	Field meas.													field	meas.																	_			
IR magnet	Installation/ dis	mantien	nent																						_				_						
Concrete shield	Installation/ dis	mantlen	nent																																
Cosmic-ray test												w/o V	/XD										w/ VX	D											
Endcap • Endyoke	Installation																																		
TOP	Installation												-		F	irst	: tar	get	lun	nir	nosi	ty			_	-						_	-		_
CDC	Installation										1				1	x	10 ³⁴	cm	1 ⁻² 5 ⁻¹	1															
VXD	Installation											PXD	Read	У				•																	
Belle II Status		_		_	_						on th	e bea	m line																					_	- I
RF System											RF	reinf	orcen	nent												16									

SuperKEKB luminosity projection

K. AKAI, SuperKEKB Accelerator Status, Nov. 12, 2012, 13th B2GM, KEK

Summary

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance, achieving and surpasing design values
- Major upgrade at KEK in 2010-15 → SuperKEKB+Belle II, L x40, construction started, final approval by the Japanese government end of 2010
- Funding also secured by collaborating countries
- Physics reach updates available
- Expect a new, exciting era of discoveries, complementary to the LHC

Additional slides

Backgrounds

Ver. 2013.3.4

