

Photon detectors for fast single photon detection

Peter Križan University of Ljubljana and J. Stefan Institute

University of Ljubljana "Jožef Stefan" Institute

Contents

Why fast single photon detection? Multianode PMTs MCP PMTs HPDs, HAPDs SiPMs

Summary

Parameters of photosensors

Photon detection efficiency (PDE)

- quantum efficiency
- collection efficiency / Geiger discharge probability Granularity

Time resolution (transient time spread – TTS)

Long term stability

Operation in magnetic field

Dark count rate

+ ...

Photon detection in RICH counters

RICH counter: measure photon impact point on the photon detector surface

- \rightarrow detection of single photons with
- sufficient spatial resolution
- high efficiency and good signal-to-noise ratio
- over a large area (square meters)

Special requirements:

- Operation in magnetic field
- High rate capability
- Very high spatial resolution
- Excellent timing (time-of-arrival information)

Fast photon detection

New generation of RICH counters: precise time information needed to further improve performance:

- Reduce chromatic abberation (group velocity): Focusing DIRC
- Combine TOF and RICH techniques: TOP (Time-ofpropagation counter), TORCH

 \rightarrow Need photo sensors with excellent timing

First fast multianode sensor for single photons: MA PMT

Multianode PMT Hamamatsu R5900 with metal foil dynodes

•Excellent single photon pulse height spectrum

- •Low noise (few Hz/ch)
- •Low cross-talk (<1%)

HERA-B RICH

← Little noise, ~30 photons per ring

Typical event

Very good performance:

Kaon efficiency and pion fake probability

Photon detector for the COMPASS RICH-1

Upgraded COMPASS RICH-1: similar concept as in the HERA-B RICH, lens system + Hamamatsu MAPMTs

New features:

- <u>UV extended</u> PMTs & lenses (down to 200 nm)
- <u>surface ratio =</u> (telescope entrance surface) / (photocathode surface) = <u>7</u>
- <u>fast electronics</u> with <120 ps time resolution

COMPASS RICH-1 upgrade

Performance:

- ~ 60 detected photons per ring at saturation ($\beta = 1$) $\rightarrow N_0 \sim 66 \text{ cm}^{-1}$ $\sigma_{\theta} \sim 0.3 \text{ mrad} \rightarrow 2 \sigma \pi \text{-K}$ separation at ~ 60 GeV/c
- K-ID efficiency (K[±] from Φ decay) > 90% $\pi \rightarrow K$ misidentification (π [±] from K_s decay) ~ 1 %

RICH for CBM at FAIR (GSI)

Compressed Baryonic Matter experiment

RICH: electron ID (= strong π suppression) and hadron ID

- 2.25 m long CO₂ gas radiator
- photon detector: 2 MA PMT planes
- need sensitivity down to 180nm

One of the sensor candidates: a recent version of the R5900

Hamamatsu R11265-103-M16: 78% effective coverage SBA cathode, 35% max q.e.

Flat pannel multianode PMTs

Problem: active area fraction One possible solution: make a larger sensor

Hamamatsu: flat pannel PMT H8500

- 52 x 52mm², 89% effective coverage
- 64 channels, pixel size 5.8 x 5.8 mm2
- 12 dynodes, metal foil type
- Bialkali cathode, max 25% quantum efficiency
- single photon pulse height distribution not as good as in the smaller R5900 (and related tubes like 7600)

Flat pannel MA PMTs

First used in a prototype RICH for Belle II, with aerogel radiator.

array of 16 H8500 PMTs

Clear rings, little background

Used for the proof-of-principle test of the focusing radiator configuration

Flat pannel MA PMTs: Focusing DIRC

Next step in the DIRCdevelopment, remove the stand-off box \rightarrow

Focusing DIRC

Super-B factory: 100x higher luminosity => <u>DIRC needs to be</u> <u>smaller and faster</u>

Focusing and smaller pixels can reduce the expansion volume by a factor of 7-10 !

Timing resolution improvement: $\sigma \sim 1.7$ ns (BaBar DIRC) $\rightarrow \sigma \leq 150-200$ ps ($\sim 10x$ better) allows a measurement of the photon group velocity $c_g(\lambda)$ to correct the chromatic error of θ_c .

Photon detector requirements:

•Pad size <5mm

•Time resolution ~50-100ps

One of the two options: Hamamatsu flat pannel PMTs.

Flat pannel MA PMTs: CBM RICH

Baseline option for the CBM RICH

News: a novel version of H8500 available, with a considerably better single photon pulse height distribution

Same sensor also considered for the CLASS12 RICH

Micro-channel plate PMTs

- Fast
- Immune to an axial magnetic field

BURLE 85011 microchannel plate (MCP) PMT: time resolution after time walk correction

Tails understood, can be significantly reduced by:

 decreased photocathode-MCP distance and

•increased voltage difference

Peter Križan, Ljubljana

MCP PMT: sensitivity to magnetic field

Number of detected hits on individual channels as a function of light spot position.

> B = 0 T, HV = 2400 V

B = 1.5 T, HV = 2500 V

In the presence of magnetic field, charge sharing and cross talk due to long range photoelectron back-scattering are considerably reduced.

Belle upgrade – side view

Similar to DIRC, but instead of two coordinates measure:

- One (or two coordinates) with a few mm precision
- Time-of-arrival
- → Excellent time resolution < ~40ps required for single photons in 1.5T B field

Hamamatsu SL10 MCP-PMT

DIRC counters for PANDA (FAIR, GSI)

Two DIRC-like counters are considered for the PANDA experiment

Peter Križan, Ljubljana

PANDA barrel DIRC

→ Talk by Mathias Hoek

PANDA endcap DIRC

Two different readout designs:

Peter Križan, Ljubljana

LHCb PID upgrade: TORCH

MCP PMTs ageing

MCP PMT ageing: a serious problem in most of the planned aplications.

Cures:

- Better cleaning of the MCPs, better vacuum
- Al foil between PC and first MCP
- Al foil between two MPC stages
- Atomic layer deposition (ALD)

Peter Križan, Ljubljana

MCP PMTs ageing, cure

Photek, ALD deposition

No drop in QE after 5 C/cm²

Photo current drop due to a reduced gain (microchannel plate ageing)

MCP PMTs ageing, cure

Hamamatsu, ALD deposition

No drop in QE after 7.4 C/cm²

LAPPD – Large Area Picosecond Photon Detector

Glass Package (20x20cm²)

Window

- Cheap, widely available float glass
- Anode is made by silk-screening
- Flat panel
- No pins, single HV cable
- Modular design
- High bandwidth 50 Ω object
 - designed for fast timing

LAPPD – Large Area Picosecond Photon Detector

MCP by Atomic Layer Deposition (ALD)

Beneq reactor for ALD @Argonne National Laboratory A.Mane, J.Elam

Porous glass Resistive coating ~100nm (ALD) Emissive coating ~ 20nm (ALD) Conductive coating (thermal evaporation or sputtering)

University

of Chicago

Hybrid photodetectors

Hybrid photodetector: LHCb RICHes

Photon detector: hybrid PMT (R+D with DEP) with 5x demagnification (electrostatic focusing).

Hybrid PMT: accelerate photoelectrons in electric field (~20kV), detect it in a pixelated silicon detector.

NIM A553 (2005) 333

LHCb Event Display

- \succ Orange points \rightarrow photon hits
- ➤ Continuous lines → expected distribution for each particle hypothesis

F. Muheim, RICH 2010

Belle upgrade – side view

Two new particle ID devices, both RICHes:

Barrel: time-of-propagation (TOP) counter

Endcap: proximity focusing RICH

Aerogel RICH photon detectors

Need: Operation in 1.5 T magnetic field Pad size ~5-6mm

Baseline option: large active area HAPD of the proximity focusing type

Cherenkov angle distribution 64801 Entries Mean 0.3092 RMS 0.07419 6000 γ^2 / ndf 143.5 / 28 6129 + 39 4 consta mear 3067 ± 0.0001 5000 BG cons -192.6 ± 20.5 BG slop 1715 ± 69.4 4000 # of tracks : 2700 3000 # Photons : 41339.7 +- 227.3 Photon/track: 15.31 +- 0.08 BG / track : 2.00 +- 0.03 2000 run048 1000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 °0

6.6 σ p/K at 4GeV/c ! → NIM A595 (2008) 180

ARICH photon detector: HAPD

Hybrid avalanche photo-detector developed in cooperation with Hamamatsu (proximity focusing configuration):

- 12x12 channels (~5x5 mm²)
- size ~ 72mm x 72mm
- ~ 65% effective area
- total gain ~ $10^4 10^5$ (bombardment ~1500, avalanche ~40)
- detector capacitance ~ 80pF/ch.
- typical peak QE ~ 30%
- works in mag. field (~perpendicular to the entrance window)

ARICH photon detector: HAPD

Tests in 1.5 T magnetic field show improved performance:

- no photoelectron back-scattering cross-talk
- Effect of non-uniformity of electric field disappears

40 35 گ

30

25

20

15

10

5 0

300

400

wavelength [nm]

В

QE improved by Hamamatsu with super bialkali photocathode: $25\% \rightarrow 32\%$ peak

x(point)

SiPM as photon detector?

Can we use SiPM (Geiger mode APD) as the photon detector in a RICH counter?

+immune to magnetic field

+high photon detection efficiency, single photon sensitivity

- +easy to handle (thin, can be mounted on a PCB)
- +potentially cheap (not yet...) silicon technology
- +no high voltage

-very high dark count rate (100kHz – 1MHz) with <u>single</u> photon pulse height

-radiation hardness

SiPMs as photon detectors?

SiPM is an array of APDs operating in Geiger mode. Characteristics:

- low operation voltage ~ 10-100 V
- gain ~ 10⁶
- peak PDE up to 65%(@400nm) $PDE = QE \times \varepsilon_{qeiger} \times \varepsilon_{geo}$
- $\epsilon_{_{deo}}$ dead space between the cells
- time resolution ~ 100 ps
- works in high magnetic field
- dark counts ~ few 100 kHz/mm²

70

60

50

40

100U

050U

(Ta=25 °C)

Expected number of photons for aerogel RICH

with multianode PMTs or SiPMs(100U), and aerogel radiator: thickness 2.5 cm, n = 1.045 and transmission length (@400nm) 4 cm. photons/10nm N_{SIPM}/N_{PMT}~5 incident photons/10nm Assuming 100% detector active area SiPM photons 3 N=76 2 PMT But: Dark counts have single photons photon pulse heights (rate 0.1-1 MHz) 0 500 300 700 800 200 400 600 900 λ[nm]

Peter Križan, Ljubljana

Can such a detector work?

Improve the signal to noise ratio:

- •Reduce the noise by a narrow (<10ns) time window
- •Increase the number of signal hits per single sensor by using light collectors and by adjusting the pad size to the ring thickness
- E.g. light collector with reflective walls

or combine a lens and mirror walls

Detector module design

Light guide geometry optimisation

Light Guide Acceptance / (d and out)

Peter Križan, Ljubljana

Detector module

SiPM beam test: TDC distributions

Total noise rate ~35 MHz (~600 kHz/MPPC)
Hits in the time window of 5ns around the peak are selected for the Cherenkov angle analysis

Peter Križan, Ljubljana

Ring images

- module was moved to 9 positions to cover the ring area
- these plots show only superposition of 8 positions (central position is not included)

w/o light guides

SiPM beam test: Cherenkov angle distributions

Peter Križan, Ljubljana

Time resolution: blue vs red

New player: digital dSiPM

DPC: Front-end Digitization by Integration of SPAD & CMOS Electronics

T. Frach, G. Prescher, C. Degenhardt, B. Zwaans, IEEE NSS/MIC (2010) pp.1722-1727 C. Degenhardt, T. Frach, B. Zwaans, R. de Gruyter, IEEE NSS/MIC (2010) pp.1954-1956

Radiation damage

Expected fluence at 50/ab at Belle II: 2-20 10^{11} n cm⁻² \rightarrow Worst than the lowest line

→Very hard to use present SiPMs as single photon detectors in many applications (including Belle II) because of radiation damage by neutrons

 \rightarrow Also: could only be used with a sofisticated electronics – wave-form sampling

Summary

- Single photon detection is at the hearth of the RICH detectors
- New methods require very fast timing in radiation harsh environments
- A number of new detectors has been developed recently to cope with these requirements
- A very active field!
- My talk can only be seen as a warming up there will be several very interesting presentation on recent results!