

Univerza v Ljubljani

PID for super Belle: R&D status

Peter Križan University of Ljubljana and J. Stefan Institute

BNM2008, Atami, Jan 24-26, 2008

January 26, 2008

BNM2008, Atami

Belle upgrade – side view

Aerogel RICH:

- •Photon detector studies (MCP PMT, HAPD, SiPM)
- •Read-out R+D
- •Open issues
- TOP: \rightarrow next talk
- •Photon detector studies (MCP PMT)

Focusing DIRC:

•Beam test, read out electronics

January 26, 2008

BNM2008, Atami

PID upgrade in the endcap

improve K/ π separation in the forward (high p) region for few-body decays of B mesons

good K/ π separation for $\mathbf{b} \rightarrow \mathbf{d}\gamma$, $\mathbf{b} \rightarrow \mathbf{s}\gamma$

improve purity in fully reconstructed B decays

low momentum (<1GeV/c) e/ μ / π separation (B \rightarrow KII)

keep high the efficiency for tagging kaons

January 26, 2008

BNM2008, Atami

Requirements and constraints:

- ~ 5 σ K/ π separation @ 1-4 GeV/c
- operation in magnetic field 1.5T
- limited available space ~250 mm

- n = 1.05

- $\theta_c(\pi) \sim 308 \text{ mrad} @ 4 \text{ GeV/c}$
- $-\theta_{c}(\pi)-\theta_{c}(K) \sim 23 \text{ mrad}$
- pion threshold 44 GeV/c,
- kaon threshold 1.54 GeV/c
- time-of-flight difference (2m): t(K) - t(π) = 180 ps @ 2 GeV/c 45 ps @ 4 GeV/c

Time-of-flight measurement

Time-of-flight with Cherenkov photons from aerogel radiator and PMT window

 \rightarrow can positively identify kaons bellow Cherenkov threshold in aerogel (1.5 GeV)

 \rightarrow a fast photon detector is an advantage

January 26, 2008

BNM2008, Atami

Beam tests: very good performace

\rightarrow This photon detector does not work in magnetic field...

BNM2008, Atami

Photon detector candidates for 1.5T:

- BURLE 85011 microchannel plate (MPC) PMT
- Multichannel H(A)PD R+D with Hamamatsu
- SiPM (Geiger mode APD)

BURLE 85011 microchannel plate (MCP) PMT: multi-anode PMT with two MCP stages, 8x8 anode pads, pitch ~ 6.5mm

→excellent performance in beam and bench tests → very fast (σ ~40ps for single photons)

Beam tests of Burle MCP PMT

Tested in pion beam combination with multi-anode PMTs. →Stable operation, very good performance

Results:

- • σ_9 ~13 mrad (single cluster)
- number of clusters per track N~ 4.5
- $\sigma_9 \sim 6$ mrad (per track)
- • \rightarrow ~ 4 $\sigma \pi/K$ separation at 4 GeV/c

To do list:

•improve collection efficiency and active area fraction \rightarrow higher number of det. photons \rightarrow done _{BNI} •aging study

MCP-PMT timing properties

Bench tests with pico-second laser

Time resolution as a function of the number of detected photons \rightarrow

Additional bench tests needed: study detailed timing properties and cross-talk.

Determine their influence on the

- position resolution and
- time resolution

January 26, 2008

BNM2008, Atami

Outside dark box:

- PiLas diode laser system EIG1000D (ALS)
- 404nm laser head (ALS)
- filters (0.3%, 12.5%, 25%)
- optical fiber coupler (focusing)
- optical fiber (single mode,~4μm core)

Inside dark box mounted on 3D stage:

- optical fiber coupler (expanding)
- semitransparent plate
- reference PMT (Hamamatsu H5783P)
- focusing lens (spot size $\sigma \sim 10 \mu m$)

BNM2008, Atami

Understanding time-of-arrival distribution

January 26, 2008

Charge sharing

Fraction of the signal detected on channel 1 vs. x position of light spot

sizable charge sharing in
 ~2mm wide boundary area
 can be used to improve position resolution

January 26, 2008

BNM2008, Atami

Conclusions

Back-scattering range and spread in timing depend on the

- photocathode-MCP plate distance
- photocathode-MCP plate voltage

→The distance should be as small as possible, ~0.5mm-1mm (in the tested tube 6mm) → such a tube already exsists

- →The voltage should be as high as possible, 500V max. allowed (in the tested tube fixed to 200V) → modify bleeder
- → Some of the effects will be reduced (or disappear) in high B field, some will remain (timing)

January 26, 2008

BNM2008, Atami

Photon detector candidate: H(A)PD

HAPD bench tests

ADC distribution of HAPD

- With Maximum bias voltage
- -8.5 kV high voltage
- 1 p.e. level light from LED

Clear separation between pedestal and 1 p.e. peak!!

channel	bias [V] 1	bombard- ment gain*	total gain	avalanche gain	S/N	
chipA-22	331	1600	32000	20	8.8	_
chipB-29	331	1750	26000	15	8.4	
chipC-22	337	1600	60000	37	15.1	Γ
chipD-22	343	1650	67000	42	13.4	
*=measured by Hamamatsu						

- All the four chips show good performance.
- avalanche gain depends on (max.) bias voltage.

BNM2008, Atami

HAPD bench tests

4

• No large channel dependence in gain, S/N.

- Problem in the channels at edge.
 - Similar effects seen in old samples.
 - Maybe distortion of the electric field inside the tube?

dominated by the crosstalk

from neighboring channel

HAPD read-out R+D

Single photo-electron pulses recorded by the ASIC.

Noise: ~1900 e at 80pF (HAPD capacitance)

Now: studying cross-talk etc

Plan: next ASIC version: keep only the analog part (to reduce noise), digital moved to a FPGA.

January 26, 2008

BNM2008, Atami

SiPMs as photon detectors?

SiPM is an array of APDs operating in Geiger mode. Characteristics:

- low operation voltage \sim 10-100 V
- gain ~ 10⁶
- peak PDE up to 65%(@400nm)
 - PDE = QE x ε_{geiger} x ε_{geo}
- ε_{qeo} dead space between the cells
- time resolution ~ 100 ps
- works in high magnetic field

70

60

50

100U

(Ta=25 °C)

pulse heights

with multianode PMTs or SiPMs(100U), and aerogel radiator: thickness 2.5 cm, n = 1.045 and transmission length (@400nm) 4 cm. photons/10nm N_{SIPM}/N_{PMT}~5 incident photons/10nm Assuming 100% detector active area SiPM photons 3 N=76 2 Never before tested in a RICH PMT photons where we have to detect single 1 photons.
— Dark counts (rate N=15 0 0.1-1 MHz) have single photon 200 300 900 400 500 600 700 800 λ[nm]

Atami

Cosmic test setup

- 6 Hamamatsu SiPMs used:
 - 2x 100U; background ~400kHz
 - 2x 050U; background ~200kHz
 - 2x 025U; background ~100kHz
- signals amplified (ORTEC FTA820),
- discriminated (EG&G CF8000) and
- read by multihit TDC (CAEN V673A)
 with 1 ns / channel

January 26, 2008

BNM2008, Atami

SiPM: Cherenkov angle distributions for 1ns time windows

Cherenkov photons appear in the expected time windows → First Cherenkov photons observed with SiPMs!

Light collection: improve signal to noise ratio

Cherenkov photons with light collectors

$$N_{with} / N_{without} \sim 2.2$$

in agreement with the expectationsFurther improvements possible by

- reducing the epoxy protective layer
- using better light collector

January 26, 2008

BNM2008, Atami

Photon detectors for the aerogel RICH, summary

BURLE 85011 MPC PMT

- Best understood, beam and bench tested, excellent timing
- Open issues: ageing, read-out for fast timing
- How well can we determine TOF start time at IP?

Multichannel H(A)PD – R+D with Hamamatsu

- Finally working samples, good progress in read-out electronics
- Open issues: more tests needed (beam+bench), ageing

SiPM (G-APD)

- Very good first results
- Open issues: radiation hardness, read-out with narrow time window

Photon detectors:

- Beam (March and June) and bench (ageing) tests in spring 2008, decision in autumn.
- Auxiliary checks: start time measurement

Aerogel production: well understood at small scale, prepare full production

Read-out electronics: ongoing R+D

Mechanical structure: first designs

TOP counter

- Quartz: 255cm^L x 40cm^W x 2cm^T
 - Focus mirror at 47.8deg.
 to reduce chromatic dispersion
- Multi-anode (GaAsP) MCP-PMT

- Linear array (5mm pitch), Good time resolution (<~40ps)
- \rightarrow Measure Cherenkov ring image with timing info.

MCP with GaAsP: Q.E. measurement

- light source (halogen lamp) + monochromator
- $\boldsymbol{\cdot}$ focus the light to $1mm\!\times\!1mm$
- MCP-PMT and photo diode are located on the micro-moving stage
- move the micro-moving stage with 1mm step
- $\boldsymbol{\cdot}$ measure the current with picoammeter

two-dimensional variation of Q.E. (wavelengths: 420, 580, 680nm)

- No big differences at three wavelengths.
- Very good uniformity of Q.E.

Wavelength dependence of Q.E.

January 26, 2008

- Dark count rate: ch.4. 450 kHz at HV=3400V.
- It seems that the dark count rate is correlated with Q.E.

Time resolution measurement – single photons

TTS:~40ps

Focusing DIRC tests at SLAC

Gary Varner, Larry Ruckman (Hawaii) with J. Va'vra, B. Ratcliff et al (SLAC)

Photon detectors: flat pannel PMTs and Burle MCP PMTs, part of it read-out by Gary's wave sampling read-out

January 26, 2008

BNM2008, Atami

Buffered Large Analog Bandwidth (BLAB1)

- Custom Analog-to-Digital (ADC)
- 65 k deep sampling
- · High speed sampling
- Low power consumption
- 10 real bits of dynamic range

January 26, 2008

BNM2008, Atami

Typical single p.e. signal [Burle]

January 26, 2008

BNM2008, Atami

Beam test data looks good, being analyzed

Plan for the next beam test: equip 7 MCP PMTs with BLAB read-out

Summary

Aerogel RICH:

- A lot of progress in understanding the photon detectors; more beam/bench tests in spring → decision in autumn
- Read-out: still a lot to be done, final choice depends on photon detector (timing or not)

TOP:

- Photon detector with GaAsP photocathode: excellent Q.E. and timing, dark count rate high.
- Plan: study ageing.

Focusing DIRC:

• Promissing beam tests at SLAC, progress in read-out electronics interesting for other devices as well.