

 \bigstar Measurement of $b \to s \ell^+ \ell^-$ decays

- Style="text-align: center;">Yhat comes next?
- Alemmary 🔶

Fundamental quantity: distinguishes matter from anti-matter.

A bit of history:

- +001 ni zycays in K^0 decays in 1964
- large in B decays $igstar{}$ Discovery of $B^0-\overline{B}^0$ mixing at ARGUS in 1987 indicated that the effect could be
- and some general purpose experiments tried to do it Alany experiments were proposed to measure it, some of them were actually built,
- and BaBar at asymmetric e^+e^- colliders B factories $igstar{}$ Measured in the $B^0-\overline{B}^0$ system in 2001 by the two dedicated spectrometers Belle

INVERSE A FRANK

CP Violation in the Standard Model

CP violation is accommodated as an irreducible phase in the weak interaction mixing matrix (CKM)

Unitarity of V leads to conditions the matrix elements have to satisfy, e.g. $V_{ub} V_{ub} V_{bb} + V_{cd} V_{bb}^* + V_{bd} V_{bb}^* = 0$.

→ unitarity triangle

INVERSE A FRANK

" $c\phi \Omega$ nis"

 ${}^{f}S$

→ direct CP violation

 $\mathsf{N}.\mathsf{B}. \ \mathcal{A}_f \neq 0 \to \Gamma(B \to f_{CP}) \neq \Gamma(B \to f_{CP})$

 1ϕ 2 uis

 $1\phi^2$ uis

 $1\phi^2$ uis

 $\gamma^{\mathfrak{f}} \equiv \epsilon_{-5i\phi_{M}} \frac{\Psi^{D}(\underline{B} \to \widehat{l}^{Cb})}{\Psi^{D}(\underline{B} \to \widehat{l}^{Cb})}$

Particle identification:

50 layers

Tracking and vertexing

(%0 pprox 60%) ldentify K^\pm up to 3.5 GeV/c (efficiency pprox 90%, fake rate pprox 6%

• Aerogel Cherenkov Counter (ACC): ref.index 1.01-1.03

 $\%7 \approx x_{b/3b} \circ :$ OD ni $x_{b/3b} \star$

for 1 GeV/c tracks (90^{0})

m o/VəD I fa %ð $m E.0 pprox rac{Tq}{Tq}$

VeD I te $\%8.1 \approx rac{\pi^{o}}{A}$ (IzO) reteining calorimeter (Self in m Cell is the retronation of the m Cell

 M_L and Muon detector (KLM): 14 layers, $\epsilon_\mu > 90\%$ at fake rate 2%

UNIVERZA V LUUBLIAN

Peter Križan

April 25, 2003

Determine Δt from $\Delta z = \beta \gamma c \Delta t$:

- \bullet clock start: resolution on tag side 140 μ m ($\epsilon=91\%$) charm decays
- (%20 = 3) m μ diversion on CP side 75 μ m ($\epsilon = 92$ %)

 $\mathsf{m}_{\mathcal{H}} \; 002 = z \gamma \gamma c \tau_B = 200 \; \mu \mathsf{m}$


```
	o tagging variable {f q} is a B^0,\,q=-1 if the tagging B is a {ar B}^0.
```

Efficiency > 99.5%, $\epsilon_{effective} = 28.8 \pm 0.5$ %

Flavour tagging 2

more for kaons). Tagging is not perfect: there is always a chance w that the tag is fake (less for leptons,

- $au t_b m \Delta \min (w \mathfrak{L} \mathfrak{l}) \leftarrow t_b m \Delta \min$, becomes investigation is reduced, the $t_b m \Delta \min \Delta m \mathfrak{L}$
- .tneve dce each event. \rightarrow Needed: w for each event.

Classify events into six categories in a tag quality variable r.

, ni slevrətni ð ni (zvecəb $^{-q+(*)}Q$ bne $^{-\pi^{+(*)}}Q$, $^{-\chi^{+*}}Q \leftarrow ^{0}\overline{a}$ gnizu) Calibrate the relation (1-2w) vs. r with data: measure the $B^0ar{B}^0$ mixing amplitude

Peter Križan

UNIVERSA V LUUBLIAN

April 25, 2003

010.0 >	LB	010.0 >	$^{p}m abla$
0.010	אסכאפרטחל דראכלוסח $J/\psi X_L$ האכלא	110.0	tit $_{ m I} \phi \Omega { m nis}$ ni seid əldiszoq
0.014	resolution function	0.022	vertexing

Recent results from Belle (stran 19)

Probability functions of ΔE and $M_{
m bc}$ for each LR-r interval. Basis as functions of ΔE and $M_{
m bc}$ for each LR-r interval.

Peter Križan

$\mathcal{V}^{\mu\mu}$	pue	$^{\scriptscriptstyle {\scriptstyle \scriptstyle $	ui	Errors	Systematic	S
------------------------	-----	--	----	---------------	------------	---

<u> 290[.]0–</u>	+0.083	-0.083	480.04	Total
-0.002	700.0+	-0.015	+0.003	Background shape
-0.013	010.0+	-0.020	610.0+	Resolution function
-0.022	+0.022	- 0.014	+0.021	Physics $(au_{B^0}, \Delta_{m_d}, \lambda_{K\pi})$ Physical Physics
910.0-	+0 [.] 015	-0.021	+0.026	Wrong tag fraction
-0.020	+0.052	-0.021	910.0+	Fit bias
-0.012	40.037	− 0.054	440.04	Yertexing
-0.055	440.04	-0.048	+0.058	Background fractions
-error	+error	—Gryor	+error	Source
$^{\mu u}S$		$^{\mu\mu}\mathcal{V}$		

UNIVERZA V LUUBLIAN

$$\mathcal{M}_{\pi\pi}\mathcal{H}/[\delta \operatorname{nis}({}_{\mathcal{L}}\phi+{}_{\mathcal{I}}\phi)\operatorname{nis}|T/A|{}_{\mathcal{L}}]-=\pi\pi\mathcal{M}$$

with
$$R_{\pi\pi} = 1 - 2|P/T| \cos(\phi_1 + \phi_2) \cos(\delta + |P/T|^2)$$
, $\delta = \delta_P - \delta_T$

|P/T| between 0.15 and 0.45 (Gronau-Rosner 0.276 \pm 0.064) ϕ_1 between 21.3⁰ and 25.9⁰ (Belle+BaBar combined)

April 25, 2003

 $BR(B \to X_s \ell^+ \ell^-) = (6.1 \pm 1.4^{+1.3}) \cdot 10^{-6} \text{ for } M_{\ell\ell} > 0.2 \text{ GeV/c}^2$

snoitudintsib $({}_{s}X)M$ bue ${}_{\mathfrak{M}}M$

with eff. corrected predictions opserved spectra

INVERSE A FRANK

Recent results from Belle (stran 36)

April 25, 2003

Spectrometer upgrades l

Upgrade of the silicon vertex detector

- \bigstar 3 \rightarrow 4 detector planes
- better radiation hardness

INVERSE A FRANK

- (Vgolondət mu čč.0) of the read-out electronics
- segets to be included in early trigger

noitelleteni The detector is ready, tested with cosmics, waiting for the summer shut-down for

Recent results from Belle (stran 38)

Peter Križan

°0.08

Barrel: covers both tagging and $B \to \pi\pi, K\pi$. Forward: tagging only

Peter Križan

Univ. of Ljubljana and J. Stefan Institute

07

0E

DM:otaid

07

0I

0

I.0 *Z*.0

0.3

Peter Križan

Proximity focusing RICH - principle

UNIVERZA V LUUBLINU

Summary

- Belle has accumulated $(130 \text{ fb}^{-1} \text{ of data at the KEKB asymmetric B factory})$, Bairs (148), Bairs (148), Bairs (148), Bairs (148), Bairs) Current results are based on 89.6 fb⁻¹ of data (189 fb⁻¹ on $\Upsilon(4S)$, Bairs), Aarrent (180 fb), Bairs (180 fb⁻¹ of Aarrent (180 fb), Bairs)
- igstarrow CP violating parameters are measured to be

$$S_{ccs} = 0.719 \pm 0.074 \pm 0.035, \ |\lambda_{ccs}| = 0.950 \pm 0.046 \pm 0.026$$

$$\bullet$$
 Time dependent CP violation was measured in $b \rightarrow v \bar{ss}$ and $b \rightarrow v \bar{cd}$

$$\bullet$$
 Inclusive $b \to s\ell\ell$ was measured by pseudo-reconstruction:

$$^{0-01} \cdot \left(\begin{smallmatrix} \mathbf{6} \cdot \mathbf{1} + \mathbf{4} \cdot \mathbf{1} \pm \mathbf{1} \cdot \mathbf{0} \end{smallmatrix} \right) = \left(\begin{smallmatrix} -\mathfrak{I} + \mathfrak{I} \cdot \mathbf{1} + \mathbf{4} \cdot \mathbf{1} \end{smallmatrix} \right) \mathcal{R} \mathbf{R}$$

- Upgrades are either ready or being prepared to make the spectrometer even more
- The next generation B-factory (SuperKEKB) is being considered.

UNIVERZA V LUUBLINU

