

Recent advances in detectors for particle physics

A 'typical' particle physics experiment 1: Belle II

A 'typical' particle physics experiment 2: ATLAS

i eter isinzariy Ejabiyaria

A 'typical' particle physics experiment 3: LHCb

Peter Križan, Ljubljana

A 'typical' particle physics experiment 4

Contents

Introduction

- New sensors for tracking (and vertexing)
- Particle identification
- Low level light sensors
- **Energy measurements**
- Applications

June 17-21, 2019

A very broad topic for a single talk – very hard to cover all interesting developments \rightarrow Some subsample, also partly reflecting my own interests, hopefully broad enough to be interesting for everybody

Where are we?

Intensity frontier:

- Belle II just started taking data
- LHCb is being upgraded

Energy frontier:

- ATLAS and CMS are getting ready for a major upgrade in the next long shut-down
- ALICE is being upgraded

Tracking (and vertexing)

Various needs:

- Lower energies (Belle II): precision tracking and minimal multiple scattering, few particles in the final state, no event overlap
- LHC: precision with a high density of particles, multiple overlayed interactions within the same event, high radiation load

Vertexing at Belle II:

Momenta of charged particles from B meson decays: p < 4 GeV/c

<image/>		
Beryllium beam pipe 2cm diameter		
Vertex Detector 2 layers pixels + 4 layers strips		
	Beam Pipe DEPEET nivels	r = 10mm
	Layer 1	r = 14mm
	Layer 2	r = 22mm
	Laver 3	r = 39mm
10.000	Layer 4	r = 80mm
0.000	Layer 5	r = 104mm
	Layer 6	r = 135mm

Expected performance

רכנכו וגווצמוו, בועטוןana

DEpleted P-channel FET

Pixel detector: 2 layers of DEPFET sensors

Capacitors

DAQ, data reduction

ROI selection

Slow control

| Optical fiber | FTSW, clock, trigger

I Ethernet

I Ethernet I

Key R&D aspects for Belle II PXD

- Low-mass modules
 - Unique all-silicon module, self-supporting 75 μ m thin silicon \rightarrow 0.2% X₀
 - Active pixel sensor \rightarrow amplification of signal from thin silicon
 - Low power dissipation in sensitive area
- Dedicated read-out ASICs
 - Three types of ASICs (DCD, DHP, Switcher)
 - Fast front-end ASIC allowing fast read-out for acceptable occupancy
 - On-module data reduction
- Module assembly procedure
 - All assembly steps compatible with low-mass modules
- Low-mass support structures within the sensitive volume and efficient thermal management → CO2 cooling

SVD: four layers of double sided silicon strip detectors.

Main R+D areas:

Origami chip-on-sensor concept (readout chips on top of the sensors with flex pitch adapters bent around the edge to reach the bottom sensor side) for good S/N with fast readout and moderate material budget

Excellent time resolution (~4ns) thanks to multiple recorded samples and waveform fitting

CO₂ dual-phase cooling

Both PXD Halfs assembled on Beam Pipe

31st B2GM, Oct 2018: PXD Status

SVD construction steps

SVD +X completion (Feb 2018)

+X mount on PXD (Oct 3, 2018)

SVD -X completion (Jul 2018)

And completed... (Oct 4, 2018)

Belle II vertex detector in action

LHCb Upgrade: in progress

- All front-end electronics read out at 40 MHz
- 30 MHz avg. input to a full software trigger

LHCb Vertex LOcator upgrade

LHCb Vertex LOcator upgrade

Micro-channel cooling

- 500 μ m thick silicon substrate with integrated micro channels (70 μ m x 200 μ m) :
 - same thermal expansion as sensors
 - low material
 - high thermal efficiency
 - cooling power ~50 W
- pressure: 14 bar @ -30 °C, 60 bar @ 22 °C

June 17-21, 2019

ANIMMA2019

Peter Križan, Ljubljana

The HL-LHC environment

Radiation levels up to:

- Fluence of $2x10^{16}$ 1 MeV n_{eq}/cm^2
- Total Ionizing Dose (TID) ~ 1 Grad
- Pileup up to 240

Silicon particle detectors: directions for the future

- Extreme radiation hardness 3D detectors (hybrid technology possibly also developments into monolitic)
- Large area coverage for position resolution (mass production) depleted CMOS sensors (fully monolitic or hybrid ASIC)
- Timing detectors LGAD with a possible application of 3D (hybrid technology)

3D detectors

Key advantages

•Better charge collection efficiency over the large fluence range (up to 3e16 cm⁻² – close to 100%)

•Faster charge collection (depends on inter-column spacing) – very promising for timing applications

•Reduced full depletion voltage and by that the power

•Larger freedom for choosing electrode configuration

•Recent progress allowing also single sided processing

Limitations

- •Columns are a dead area (aspect ratio ~30:1)
- but most of the tracks are anyway inclined
- •Much higher inter-electrode capacitance (hence noise), particularly if small spacing is desired
- Availability on a large scale
- Time-scale and cost

Low Gain Avalanche Detectors (LGAD)

- APD like devices which allow segmentation and high voltage operation close to breakdown
- Pioneered by RD50 and getting more and more attention worldwide (HPK, FBK, Micron)

ATLAS High Granularity Timing Detector Test Prototype (2x2 array)

Key properties

- Gain very sensitive to p+ layer doping and process parameters (~1e16 cm⁻³, ~2 mm deep)
- Gains of up to 100 achieved giving excellent timing resolution of 26 ps for thin LGADs
- Currently the best technology for achieving excellent timing measurement for MIP will be employed at ATLAS and CMS experiments after the upgrade
 Limitations:
- Radiation hardness problem of acceptor removal which decreases the gain with fluence (intensive search for solution: carbon coimplantation and understanding removal mechanism)
- Regions around the electrodes do not have gain fill factor improvement

Depleted-CMOS detectors

- HV-CMOS process which allows monolithic detectors with application of external HV depletion
- First devices produced showing huge potential in all respects: scalability (12" wafers), cost and integration (everything integrated on chip electronics + detector)

Key properties

- Different substrates often limited by vendor up to full depletion of 300 mm
- Excellent position resolution

Limitations:

- Radiation hardness problem of acceptor removal which changes detector performance
- Speed for timing applications is not yet optimal
- SOI substrates or different other designs/processes including "Shallow Trench Isolation" affect charge collection

HL-LHC

Doublet layers: 2Strip, Pixel-Strip to

Hybrid detectors

- 3D and Planar sensors can reach a radiation hardness of $>10^{16} n_{eq}/cm^2$
- Further development needed to achieve better lithography for smaller (25×100µm²) 3D sensors
- Joint CERN RD53 development of readout chip with 65 nm CMOS technology between ATLAS and CMS

Over 98% efficiency up to 2.7 x 10^{16} n_{eq}/cm² with a bias voltage of 150 V

Timing

Exploit the time spread of collisions to reduce the pileup contamination

Timing layers in ATLAS

- Low Gain Avalanche
 Detector (LGADs) pixel size:
 1.3x1.3 mm²
- Excellent time resolution (30ps/track), flat in η
- radiation-hard (up to 3.7x10¹⁵ n_{eq}/cm² and 4.1MGy)
- Occupancy< 10%
- 2 double planar layers per endcap providing an average number of hits per track of 2-3
- Pseudorapidity coverage: 2.4<|η|<4.0
- Radial extension: 12 cm < R < 64 cm
- z position: 3.5 m
- Thickness in z: 7.5cm

Timing layer at CMS

- Thin layer between the tracker and the calorimeters
- ~30 ps resolution for charged tracks (above 0.7 GeV)
- Hermetic coverage for $|\eta| < 3.0$

CMS

Barrel: LYSO tiles + SiPM readout at tracker-ECAL interface, 25 mm thick

- 40 m², 250k channels
- radiation (4/ab): 2x10¹⁴ n_{eq}/cm²

Endcap: Si with internal gain (LGAD) on the Calorimeter Endcap nose, 42 mm thick

- 12 m², 4M channels
- radiation (4/ab): ~10¹⁵ n_{eq}/cm² June 1/-21, 2019

ANIMMA2019

ATLAS CMOS demonstrator program

WITH SEVERAL FOUNDRIES

Depleted CMOS did not make it for the next upgrade, but remains extremely important for further LHC upgrades, CepC, CLIC, ILC, FCCee and FCChh

Particle identification

Essential: reduces the combinatorial background and allows to tag the flavour of decaying particles.

Example: Belle

Identification of charged particles

Particles (e, μ , π , K, p) in the final state are identified by their mass or by the way they interact.

Determination of mass: from the relation between momentum and velocity, $p=\gamma mv$ (p is known - radius of curvature in magnetic field)

 \rightarrow Measure velocity by:

- time of flight
- ionisation losses dE/dx
- Cherenkov photon angle (and/or yield)
- transition radiation

Mainly used for the identification of hadrons.

Identification through interaction: electrons and muons

- muon systems
- calorimeters

Identification of charged particles

Particles (e, μ , π , K, p) in the final state are identified by their mass or by the way they interact.

Determination of mass: from the relation between momentum and velocity, $p=\gamma mv$ (p is known - radius of curvature in magnetic field)

Measuring the Cherenkov angle

$\cos\theta = c/nv = 1/\beta n$

Measuring Cherenkov angle

Photon detection in RICH counters

RICH counter: measure photon impact point on the photon detector surface

- \rightarrow detection of single photons with
- sufficient spatial resolution
- high efficiency and good signal-to-noise ratio (few photons!)
- over a large area (square meters)

Special requirements:

- Operation in magnetic field
- High rate capability
- Very high spatial resolution
- Excellent timing (time-of-arrival information)

Photon detector is the most crucial element of a RICH counter

The LHCb RICH counters

LHCb RICHes

Need:

- •Particle identification for momentum range ~2-100 GeV/c
- •Granularity 2.5x2.5mm²
- •Large area (2.8m²) with high active area fraction
- •Fast compared to the 25ns bunch crossing time

LHCb RICHes

LHCb RICHes

Photon detector: hybrid PMT (R+D with DEP) with 5x demagnification (electrostatic focusing).

Hybrid PMT: accelerate photoelectrons in electric field (~20kV), detect it in a pixelated silicon detector.

NIM A553 (2005) 333

LHCb Event Display

- \succ Orange points \rightarrow photon hits
- ➤ Continuous lines → expected distribution for each particle hypothesis

June 17-21, 2019

ANIMMA2019

F. Muheim, RICH 2010

LHCb RICHes: performance

LHCb particle identification upgrade(s)

RICH Upgrade

Photosensor: Hybrid Photon Detector with 1 MHz max. readout rate

MaPMTs from Hamamatsu

Upgrade IA: New optics, photo detectors, new electronics

Endcap: Proximity focusing RICH

Radiator with multiple refractive indices

How to increase the number of photons without degrading the resolution?

Focusing configuration – data

→NIM A548 (2005) 383, NIMA 565 (2006) 457

BELLE

4x4 array of flat pannel MAPMTs

Photon detectors for the aerogel RICH requirements and candidates

Need: Operation in a high magnetic field (1.5 T) Pad size ~5-6mm

Final choice: large active area HAPD of the proximity focusing type

Candidates: MCP PMT (Photonis/Burle 85011, SiPMs)

The big eye of ARICH

ARICH: Rings from cosmic ray muons

First events recorded in the fully instrumented ARICH.

June 17-21, 2019

ANIMMA2019

Peter Križan, Ljubljana

Barrel PID: Time of propagation (TOP) counter

Photon detector: Hamamatsu SL10 MCP-PMT Readout: waveform sampling

- Cherenkov ring imaging with precise time measurement.
- Reconstruct Cherenkov angle from two hit coordinates and the time of propagation of the photon
 - Quartz radiator (2cm thick)
 - Photon detector (MCP-PMT)
 - Excellent time resolution ~ 40 ps
 - Single photon sensitivity in 1.5 T

MCP PMTs for a very fast timing

Micro-channel plate PMTs: Single photon resolution: typically 20ps – 40ps

photo-electron

June 17-21, 2019

ANIMMA2019

TOP image

Pattern in the coordinate-time space ('ring') of a pion hitting a quartz bar with 512 MCP PMT channels

> Time distribution of signals recorded by one of the PMT channels: different for π and K

Separation of kaons and pions

Pions vs kaons: Pions vs kaons in TOP: Expected PID efficiency and different patterns in the time vs misidentification probability. PMT impact point coordinate pi time (channels) Κ 70 0.8 60 50 0.6 40 0.4 30 0.2 20 10 0 0.5 1.5 25 3 3.5 momentum (GeV) 100 200 300 400 500 0 coordinate (channels) June 17-21, 2019 ANIMMA2019 Peter Križan, Ljubljana

TOP first events

The early data demonstrated that the TOP principle is working

Barrel DIRC

- Similar to BaBar DIRC
- π/K separation 0.5 < p < 4 GeV/c
- Inner radius: 48 cm
- Radiator: 96 bars, fused silica (n=1.47), size: 17mm (T) x 33mm(W) x 2500mm (L)
- Compact photon detector: array of MCP-PMT (Photonis) in magnetic field 0.5-1 T

total 7000-10000 channels

- Time of propagation \rightarrow dispersion corrections (3D-DIRC concept – x, y, t)
- Focusing optics

SiPMs as photon detectors for RICH detectors?

SiPM is an array of APDs operating in Geiger mode. Characteristics:

- \bullet low operation voltage \sim 10-100 V
- gain ~ 10^6
- peak PDE up to 65%(@400nm) PDE = QE x ε_{geiger} x ε_{geo} (up to 5x PMT!)
- $\epsilon_{\rm geo}\,$ dead space between the cells
- time resolution $\sim 100 \text{ ps}$
- works in high magnetic field
- dark counts ~ few 100 kHz/mm²
- radiation damage (p,n)

70

WAVELENGTH (nm)

Not trivial to use in a RICH where we have to detect single photons!

Dark counts have single photon pulse heights (rate 0.1-1 MHz)

June 17-21, 2019

SiPM as photosensor for a RICH counter

Improve the signal to noise ratio:

- •Reduce the noise by a narrow (<10ns) time window (Cherenkov light is prompt!)
- •Increase the number of signal hits per single sensor by using light collectors
- E.g. light collector with reflective walls or plastic light guide

June 17-21, 2019

Photon detector with SiPMs and light guides

Next step: use arrays of SiPMs

Example: Hamamatsu MPPC S11834-3388DF

- 8x8 SiPM array, with 5x5 mm² SiPM channels
- Active area 3x3 mm²

Calorimetry: Particle flow calorimetry at CMS

High Granularity calorimetry

- Silicon: 600 m²
- Scintillator: 500 m²
- 6 M Channels

Silicon sampling calorimeter

Scintillator tiles with on-tile SiPM readout

FE- ROC providing Time-of-arrival (TOA) with a precision of 20ps

Trigger data from ASICs (300 TB/s) fed through concentrators to the back-end system (2 TB/s)

Successfully tested in a test beam at DESY

Trigger development

ATLAS

Minimize data flow bandwidth by using multiple trigger levels and regional readout (RoI)

Allow large data flow bandwidth. Invest in scalable commercial network and processing systems

LHCb

Massive use of data links

Applications in medical imaging: advances in TOF-PET

Time-of-Flight difference of annihilation gammas is used to improve the contrast of images obtained with PET

Localization of source position along the line of response:

 $\Delta t \sim 66 \text{ps} \rightarrow \Delta x = c_0 \Delta t/2 \sim 1 \text{cm}$

 Δt = coincidence resolving time, CRT

However, PET systems based on SiPM readout are reaching CRT of ~300 ps, and only with small crystals ~3x3x3 mm³ CRT<100 ps

Novel photon detectors – MCP-PMTs and SiPMs – have excellent timing resolution \rightarrow TOF resolution limited by the spread in photon emission and arrival time

Faster annihilation gamma detection method \rightarrow a faster light emission mechanism

April 2019

Possible sources of prompt photons (< 1ns)

Annihilation gamma detection with Cherenkov light

Cherenkov light is promptly produced by a charge particle traveling through the medium with velocity higher than the speed of light c_0/n . Photoelectron emits Cherenkov light in ~1ps.

Disadvantage of Cherenkov light is the small number of Cherenkov photons produced per interaction

$$N \approx \frac{370}{eV cm} l \Delta E \sin^2_C \theta \approx 370 \times 0.01 \times 2 \times 0.75 \approx 8$$

 \rightarrow detection at a single photon level!

Cherenkov radiator: PbF₂ an excellent candidate

- high gamma stopping power
- high fraction of gamma interactions via photoeffect \rightarrow electrons with maximal kinetic energy
 - \rightarrow more Cherenkov photons

	ρ	n	e ⁻ Cherenkov	Cutoff	Attenuation	Photofraction	
	(g/cm ³)		threshold (keV)	wavelength (nm)	length (cm)		
PbF ₂	7.77	1.82	101	250	0.91	46%	
LYSO	7.4				1.14	32%	
LaBr ₃	5.1				2.23	15%	

+ high transmission in visible and near UV

Excellent TOF PET timing with MCP PMTs

Pioneering experiment, two detectors in a back-to-back configuration: $PbF_{2}25x25x15 \text{ mm}^{3}\text{ with}$ MCP-PMT as photodetectors

- single photon timing ~ 50 ps FWHM
- active surface 22.5x22.5 mm²

black painted, Teflon wraped, bare

Timing resolution (black painted):

- ~ 70 ps FWHM, 5mm crystal
- ~100 ps FWHM 15mm crystal

Efficiency (Teflon wrapped):

 $\sim 6\%$, single side

(typically $\sim 30\%$ for LSO)

NIM A654(2011)532

Reconstruction - experiment

Two ^{22}Na point sources at +10 mm and -10 mm 4x4 segmented, black painted PbF_{2} radiators

 \rightarrow A simple, very fast Most-likely-point (MLP) method (~histograming of points) already gives a reasonable image

→ NIM A732 (2013) 595
Cherenkov based PET scanner?

 PbF_2 not a scintillator \rightarrow considerably cheaper! Smaller attenuation length than LYSO – small parallax error

- → Cheaper normal scanner or
- → Total/half body device

Extending axial FOV 20 cm → 200 cm: estimated 6-fold increase in SNR →
Better image quality
OR Shorter scanning time
OR Less injected activity: 8 mSv → 0.2 mSv

Full-body "snapshot"

SiPMs for Cherenkov TOF PET?

Advantages:

- $\hligh\ PDE$ more than 50%
- flexible granularity
- . low operation voltage
- operation in magnetic field
- affordable price (potentially)

→ Explore new devices and test them!

Disadvantages:

- high dark count rate ~ 100kHz/mm^2 (\rightarrow cooling)
- single photon timing resolution not yet below
- 100 ps FWHM (specially for large area devices)

June 17-21, 2019

Summary

Detectors for particle physics experiments are our discovery tools – well designed and well functioning devices have been essential for our present understanding of elementary particles and their interactions.

- A very vibrant research area: a large variety of new methods and techniques has either been developed recently, or is under commissioning or early data taking.
- New challenges are waiting for us when planning the next generation of experiments