Napredni detektorji delcev in obdelava podatkov (NDDOP) - Uvod

Peter Križan

Contents

Introduction

Experimental methods

Accelerators
Spectrometers
Particle detectors
Analysis of data

Particle physics experiments

Accelerate elementary particles, let them collide \rightarrow energy released in the collision is converted into mass of new particles, some of which are unstable

Two ways how to do it:
Fixed target experiments
Collider experiments

Peter Križan, Ljubljana

How to accelerate charged particles?

- Acceleration with electromagnetic waves (typical frequency is 500 MHz - mobile phones run at 900 , 1800, 1900 MHz)
- Waves in a radiofrequency cavity: $\mathrm{c}<\mathrm{c}_{0}$

Similar to surfing the waves

Electric field

Stability of acceleration

-For a synchronous particles (A): energy loss = energy received from the RF field
-A particle that comes too late (B), gets more energy, the one that is too fast (C), gets less \rightarrow

Peter Križan, Ljubljana

Synchrotron

Electron positron collider: KEK-B

Peter Križan, Ljubljana

Large hadron collider

Peter Križan, Ljubljana

Interaction region: Belle

Collisions at a finite angle + -11mrad

Accelerator figure of merit 1 : Center-of-mass energy

If there is enough energy available in the collission, new, heavier particles can be produced.

e.g. LHC, CERN, Tevatron: search for Higgs bosons, $\mathrm{m}_{\text {Higgs }}>100 \mathrm{GeV}$

Accelerator figure of merit 2: Luminosity

Observed rate of events $=$ Cross section \times Luminosity

$$
\frac{d N}{d t}=L \sigma
$$

Accelerator figures of merit: Iuminosity L
and integrated luminosity

$$
L_{\mathrm{int}}=\int L(t) d t
$$

Luminosity vs time

$$
\begin{gathered}
R=\mathcal{L} \sigma \\
\mathcal{L}=\frac{I_{L E R} I_{H E R}}{e^{2} f_{\text {rev }} N_{\text {bunch }} A_{\text {eff }}}
\end{gathered}
$$

A high luminosity is needed for studies of rare processes.
Peter Križan, Ljubljana

How to understand what happened in a collision?

-Measure the coordinate of the point ('vertex') where the reaction occured, and determine the positions and directions of particles that have been produced
-Measure momenta of stable charged particles by measuring their radius of curvature in a strong magnetic field ($\sim 1 \mathrm{~T}$)
-Determine the identity of stable charged particles (e, μ, π, K, p)
-Measure the energy of high energy photons γ

How to understand what happened in a collision?

Peter Križan, Ljubljana

Search for particles which decayed close to the production point

How do we reconstruct final states which decayed to several stable particles (e.g., 1,2,3)?
From the measured tracks calculate the invariant mass of the system ($\mathrm{i}=1,2,3$):

$$
M c^{2}=\sqrt{\left(\sum E_{i}\right)^{2}-\left(\sum \vec{p}_{i}\right)^{2} c^{2}}
$$

The candidates for the $\mathrm{X} \rightarrow 123$ decay show up as a peak in the distribution on (mostly combinatorial) background.
The name of the game: have as little background under the peak as possible without loosing the events in the peak (=reduce background and have a small peak width).

How do we know it was precisely this reaction?

$\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}} \mathrm{J} / \psi$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{S}} \rightarrow \\
& \mathrm{~J} / \psi \rightarrow
\end{aligned} \pi^{-} \pi^{+} \mu^{+} \mu^{+} \text {detect }
$$

For $\pi^{-} \pi^{+}$in $\mu^{-} \mu^{+}$pairs we calculate the invariant mass:
$M^{2} c^{4}=\left(E_{1}+E_{2}\right)^{2}-\left(p_{1}+p_{2}\right)^{2}$
Mc^{2} must be for K_{S} close to 0.5 GeV ,
for J / ψ close to 3.1 GeV .

Rest in the histrogram: random

coincidences ('combinatorial background')

Experimental aparatus

Detector form: symmetric for colliders with symmetric energy beams; extended in the boost direction for an asymmetric collider; very forward oriented in fixed target experiments.

Example of a fixed target experiment: HERA-B

Belle spectrometer at KEK-B

ATLAS at LHC

Components of an experimental apparatus ('spectrometer')

- Tracking and vertexing systems
- Particle identification devices
- Calorimeters (measurement of energy)

Components of an experimental apparatus ('spectrometer')

- Tracking and vertexing systems
- Particle identification devices
- Calorimeters (measurement of energy)

Silicon vertex detector (SVD)

Two coordinates measured at the same
 time
Typical strip pitch $\sim 50 \mu \mathrm{~m}$, resolution about $\sim 15 \mu \mathrm{~m}$

Interaction of charged particles with matter

Energy loss due to ionisation: depends on $\beta \gamma$, in the minimum about $2 \mathrm{MeV} / \mathrm{cm} \rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$.
Liquids, solids: few $\mathrm{MeV} / \mathrm{cm}$ Gases: few keV/cm

Bethe-Bloch equation

Straggling functions: energy loss distribution

Bethe-Bloch equation only give the average (mean) energy loss

Figure 27.7: Straggling functions in silicon for 500 MeV pions, normalized to unity at the most probable value δ_{p} / x. The width w is the full width at half maximum. See full-color version on color pages at end of book.

Electrons: fractional energy loss, 1/E dE/dx

Figure 27.10: Fractional energy loss per radiation length in lead as a function of electron or positron energy. Electron (positron) scattering is considered as ionization when the energy loss per collision is below 0.255 MeV , and as Møller (Bhabha) scattering when it is above. Adapted from Fig. 3.2 from Messel and Crawford, Electron-Photon Shower Distribution Function Tables for Lead, Copper, and Air Absorbers, Pergamon Press, 1970. Messel and Crawford use $X_{0}(\mathrm{~Pb})=5.82 \mathrm{~g} / \mathrm{cm}^{2}$, but we have modified the figures to reflect the value given in the Table of Atomic and Nuclear Properties of Materials $\left(X_{0}(\mathrm{~Pb})=6.37 \mathrm{~g} / \mathrm{cm}^{2}\right)$.

Multiple Coulomb scattering

Figure 27.9: Quantities used to describe multiple Coulomb scattering. The particle is incident in the plane of the figure.

Interaction of charged particles with matter

Energy loss due to ionisation: depends on $\beta \gamma$, typically about $2 \mathrm{MeV} / \mathrm{cm} \rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$.
Liquids, solids: few $\mathrm{MeV} / \mathrm{cm}$
Gases: few keV/cm
Primary ionisation: charged particle kicks electrons from atoms.
In addition: excitation of atoms (no free electron), on average need W_{i} (>ionisation energy) to create e-ion pair.
W_{i} typically $30 \mathrm{eV} \rightarrow$ per cm of gas about $2000 \mathrm{eV} / 30 \mathrm{eV}=60$ e-ion pairs

Ionisation

$\mathrm{n}_{\text {prim }}$ is typically 20-50/cm
(average value, Poisson like distribution - used in measurements of $\mathrm{n}_{\text {prim }}$)

The primary electron ionizes further: secondary e-ion pairs, typically about 2-3x more.

Finally: 60-120 electrons /cm

Can this be detected? 120 e-ion pairs make a pulse of $\mathrm{V}=\mathrm{ne} / \mathrm{C}=2 \mathrm{mV}$ (at typical $\mathrm{C}=10 \mathrm{pF}$) $\rightarrow \mathrm{NO}$
-> Need multiplication

Multiplication in gas

Simplest example: cylindrical counter, radial field, electrons drift to the anode in the center

If the energy eEd gained over several mean free paths (d around 10 mm) exceeds the ionisation energy \rightarrow new electron Electric field needed $\rightarrow \mathrm{E}=\mathrm{I} / \mathrm{ed}=10 \mathrm{~V} / \mu \mathrm{m}=100 \mathrm{kV} / \mathrm{cm}$

Multiplication in gas

Electron travels (drifts) towards the anode (wire); close to the wire the electric field becomes high enough (several $\mathrm{kV} / \mathrm{cm}$), the electron gains sufficient energy between two subsequent collisions with the gas molecules to ionize -> start of an avalanche.

Signal development

Time evolution of the signal

$$
u(t)=-\frac{Q}{4 \pi \varepsilon_{0} l} \ln \left(1+\frac{t}{t_{0}}\right)
$$

with no RC filtering ($\tau=\mathrm{inf}$.) and with time constants $10 \mu \mathrm{~s}$ and $100 \mu \mathrm{~s}$.

If faster signals are needed \rightarrow smaller time constants \rightarrow smaller signals
e.g. $\tau=40 \mathrm{~ns}$: \max $u(t)$ is about $1 / 4$ of the $\tau=$ inf. case

Peter Križan, Ljubljana

Multiwire proportional chamber (MWPC)

Multiwire proportional chamber (MWPC)

The address of the fired wire gives only 1-dimensional information.

Normally digital readout: spatial resolution limited to $\sigma=\mathrm{d} /$ sqrt(12)
for $\mathrm{d}=1 \mathrm{~mm} \rightarrow \sigma=300 \mu \mathrm{~m}$

Revolutionized particle physics experiments
\rightarrow Nobel prize for G. Charpak

Components of an experimental apparatus ('spectrometer')

- Tracking and vertexing systems
- Particle identification devices (PID)
- Calorimeters (measurement of energy)

Why Particle ID?

Particle identification is an important aspect of particle, nuclear and astroparticle physics experiments.

Some physical quantities in particle physics are only accessible with sophisticated particle identification (Bphysics, CP violation, rare decays, search for exotic hadronic states).

Nuclear physics: final state identification in quark-gluon plasma searches, separation between isotopes

Astrophysics/astroparticle physics: identification of cosmic rays - separation between nuclei (isotopes), charged particles vs high energy photons

Introduction: Why Particle ID?

Example 1: B factories
Particle identification reduces combinatorial background by $\sim 5 x$

Introduction: Why Particle ID?

Example 2: HERA-B

$\mathrm{K}^{+} \mathrm{K}^{-}$invariant mass.
The $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$decay only becomes visible after particle identification is taken into account.

Particle identification systems in Belle

Identification of charged particles

Particles are identified by their mass or by the way they interact.
Determination of mass: from the relation between momentum and velocity, $p=\gamma \mathrm{mv}$.
Momentum known (radius of curvature in magnetic field)
\rightarrow Measure velocity:
time of flight
ionisation losses dE/dx
Cherenkov angle
transition radiation
Mainly used for the identification of hadrons.

Identification through interaction: electrons and muons

Time-of-flight measurement (TOF)

Measure time difference over a known distance, determine velocity

Fig. 6.5. Working principle of time-of-flight measurement.

Identification with dE/dx measurement

dE/dx performance in a large drift chamber.

Peter Križan, Ljubljana

Čerenkov radiation

A charged track with velocity $v=\beta c$ above the speed of light c / n in a medium with index of refraction $n=\operatorname{sqrt}(\varepsilon)$ emits polarized light at a characteristic (Čerenkov) angle,

$$
\cos \theta=c / n v=1 / \beta n
$$

Two cases:

1) $\beta<\beta_{t}=1 / n$: below threshold no Čerenkov light is emitted.
2) $\beta>\beta_{t}$: the number of Čerenkov photons emitted over unit photon energy $\mathrm{E}=\mathrm{h} v$ in a radiator of length L amounts to

$$
\frac{d N}{d E}=\frac{\alpha}{\hbar c} L \sin ^{2} \theta=370(c m)^{-1}(e V)^{-1} L \sin ^{2} \theta
$$

Measuring Cherenkov angle

Transition radiation detectors

X rays emitted at the boundary of two media with different refractive indices, emission angle $\sim 1 / \gamma$
Emission rate depends on γ (Lorentz factor): becomes important at $\gamma \sim 1000$

- Electrons at 0.5 GeV
- Pions, muons above 100 GeV

In between: discrimination e vs pions, mions

Detection of X rays: high Z gas - Xe

Few photons per boundary can be detected Need many boundaries

- Stacks of thin foils or

- Porous materials - foam with many boundaries of individual 'bubbles'

Muon and K_{L} detector at B factories

Separate muons from hadrons (pions and kaons): exploit the fact that muons interact only electromag., while hadrons interact strongly \rightarrow need a few interaction lengths to stop hadrons (interaction lengths $=$ about 10x radiation length in iron, 20x in CsI). A particle is identified as muon if it penetrates the material.

Detect K_{L} interaction (cluster): again need a few interaction lengths.

Some numbers: 0.8 interaction length (CsI) +3.9 interaction lengths (iron) Interaction length: iron $132 \mathrm{~g} / \mathrm{cm}^{2}$, CsI $167 \mathrm{~g} / \mathrm{cm}^{2}$
$(\mathrm{dE} / \mathrm{dx})_{\text {min }}$: \quad iron $1.45 \mathrm{MeV} /\left(\mathrm{g} / \mathrm{cm}^{2}\right)$, CsI $1.24 \mathrm{MeV} /\left(\mathrm{g} / \mathrm{cm}^{2}\right)$
$\rightarrow \Delta \mathrm{E}_{\text {min }}=(0.36+0.11) \mathrm{GeV}=0.47 \mathrm{GeV} \rightarrow$ reliable identification of muons possible above $\sim 600 \mathrm{MeV}$

Example: Muon and K_{L} detection at Belle

Muon and K_{L} detector

Up to 21 layers of resistive-plate chambers (RPCs) between iron plates of flux return

Muon and K_{L} detector

Example:

event with

-two muons and a - K_{L}
and a pion that partly penetrated

Identification of muons at LHC - example ATLAS

Peter Križan, Ljubljana

$H \rightarrow 4 \mu$ (ATLAS)

Neutrino detection

Use inverse beta decay
$v_{e}+n \rightarrow p+e^{-}$
$\bar{v}_{\mathrm{e}}+\mathrm{p} \rightarrow \mathrm{n}+\mathrm{e}^{+}$

$$
\begin{aligned}
& v_{\mu}+\mathrm{n} \rightarrow \mathrm{p}+\mu \\
& \bar{v}_{\mu}+\mathrm{p} \rightarrow \mathrm{n}+\mu^{+}
\end{aligned}
$$

$$
v_{\tau}+\mathrm{n} \rightarrow \mathrm{p}+\tau
$$

$$
\bar{v}_{\tau}+\mathrm{p} \rightarrow \mathrm{n}+\tau^{+}
$$

However: cross section is very small!
$6.410^{-44} \mathrm{~cm}^{2}$ at 1 MeV
Probability for interaction in 100 m of water $=410^{-16}$

Not much better at high energies:
$0.6710^{-38} \mathrm{E} / 1 \mathrm{GeV}$ cm ${ }^{2}$ per
nucleon
At 100 GeV , still 11 orders below the proton-proton cross section

Superkamiokande: an example of a neutrino detector

[^0]

Peter Križan, Ljubljana

Superkamiokande: detection of electrons and muons

The muon or electron emits Cerenkov light \rightarrow ring at the detector walls -Muon ring: sharp edges
-Electron ring: smeared

Superkamiokande: detection of neutrinos by measureing Cherenkov photons

Light detectors: HUGE photomultiplier tubes
M. Koshiba

Muon vs electron

Cherenkov photons from a muon track:

Example: 1 GeV muon neutrino
Track length of the resulting muon:
$\mathrm{L}=\mathrm{E} /(\mathrm{dE} / \mathrm{dx})=$ $=1 \mathrm{GeV} /(2 \mathrm{MeV} / \mathrm{cm})=5 \mathrm{~m}$
\rightarrow a well defined "ring" on the walls

Superkamiokande: muon event

Muon 'ring' as seen by the photon detectors

Muon event: photon detector cillinder walls

Detection of very high energy neutrinos (from galactic sources)

The expected fluxes are very low:
Need really huge volumes of detector medium!
What is huge? From $(100 \mathrm{~m})^{3}$ to $(1 \mathrm{~km})^{3}$
Also needed: directional information.

Again use: $v_{\mu}+n->p+\mu^{-} ; \mu$ direction coincides with the direction of the high energy neutrino.

ICE CUBE: use the Antarctic ice instead of water

 1993 First strings AMANDA A 1998 AMANDA B10 ~ 300 Optical Modules 2000 AMANDA II ~ 700 Optical Modules 2010 ICECUBE 4800 Optical Modules

Normal ice is not transparent due to Rayleigh scattering on inhomogenuities (air bubbles)
At high pressures (large depth) there is a phase transition, bubbles get partly filled with water-> transparent!

Reconstruction of direction and energy of incident high energy muon netrino

For each event:
Measure time of arrival on each of the tubes

Cherenkov angle is known: $\cos \theta=1 / n$

Reconstruct muon track
Track direction -> neutrino direction
Track length -> neutrino energy

ICE CUBE

Example of a detected event, a muon entering the PMT array from below

Detekcija kozmičnih delcev na balonu

HESS 1 UHE Gamma Ray Telescope Stereoscopic Quartet

Khomas Highland, Namibia, ($\mathbf{2 3}^{\circ}{ }^{16} 6^{\prime} \mathrm{S}, \mathbf{1 6}^{\mathbf{0}}{ }^{\prime} \mathbf{3 0}^{\prime} \mathrm{E}$, elev. 1800m) Four $\varnothing=12 \mathrm{~m}$ Telescopes (since $12 / 2003$) $\mathbf{E}_{\mathbf{t h}} \sim \mathbf{1 0 0} \mathbf{G e V}$
$108 \mathrm{~m}^{2} /$ mirror [$382 \times \emptyset=60 \mathrm{~cm}$ individually steerable (2-motor) facets] aluminized glass + quartz overcoating $R>80 \%(300<\boxtimes<600 \mathrm{~nm})$

960 * 29 mm Photonis XP-2920 PMTs (8 stage, 2×10^{5} gain)
Bi-alkali photocathode: $\mathbb{Q}_{\text {peak }}=420 \mathrm{~nm}$

+ Winston Cones

Overview

Introduction, review of detectors

Interaction of particles and photons with matter

Selected experiments in elementary particle physics

- e+ e- collider: Belle and Belle II
- LHC: ATLAS and CMS
- Fixed target experiments: HERA-B
- Underground experiments (neutrinos and dark matter)
- Astroparticle physics experiments

Data analysis and processing.

Literature

Web page of this course:
http://www-f9.ijs.si/~krizan/sola/nddod/nddod.html
Slides can be found at
http://www-f9.ijs.si/~krizan/sola/nddod/slides

Complementary course (run in odd years, e.g 2021/2022):
Experimental particle and nuclear physics
http://www-f9.ijs.si/~krizan/sola/efjod/program.html

Literature

Selected experiments

- Cahn, Goldhaber: The Experimental Foundations of Particle Physics

Books

- C. Grupen, Particle Detectors, Cambridge University Press, 1996
- G. Knoll, Radiation Detection and Measurement, 3rd Edition, 2000
- W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, 2nd edition, Springer, 1994
- K. Kleinknecht, Detektoren für Teilchenstrahlung, 3rd edition, Teubner, 1992; Detectors for Particle Radiation, Cambridge University Press 1987.
- H. Wiedermann, Particle Accelerator Physics, Springer-Verlag 1993.
- P. Horowitz, W. Hill, The Art of Electronics, Cambridge University Press 1996.
- G. Cowan, Statistical Data Analysis, Oxford University Press, 1998.

Overview papers

- Experimental techniques in high energy physics, T. Ferbel (editor), World Scientific, 1991.
- Instrumentation in High Energy Physics, F. Sauli (editor), World Scientific, 1992.

Other sources

- Particle Data Book (2008, older version useful as well)
- R. Bock, A. Vasilescu, Particle Data Briefbook http://www.cern.ch/Physics/ParticleDetector/BriefBook/
- Proceedings of detector conferences (Vienna VCI, Elba, IEEE)

Requirements

Advanced particle detectors and data handling -
Napredni detektorji delcev in obdelava podatkov

- Written exam
- Oral exam

Additional literature

-More slides from my courses in Barcelona, Tokyo and Nagoya - together with more pointers to relevant literature
http://www-f9.ijs.si/~krizan/sola/barcelona/barcelona.html http://www-f9.ijs.si/~krizan/sola/tokyo/tokyo.html http://www-f9.ijs.si/~krizan/sola/nagoya-ise/nagoyaise.html

Prerequisites

If you take this course, you should have prefererably taken already

- Moderna fizika 2/Modern physics 2 (introduction to nuclei and particles)
- Fizikalna merjenja 2 (or Eksp. fiz. jedra in delcev/Exp. Particle and nuclear physics)
- Fizika jedra in osnovnih delcev/Physics of nuclei and particles

[^0]: SUPERKAMIOKANDE

