Introduction to Experimental Particle Physics

Peter Križan

University of Ljubljana and J. Stefan Institute

1st Nagoya Winter School, Ise-Shima, Februar 2009

Contents of this course

-Lecture 1: Introduction, experimental methods, detectors, data analysis
-Lecture 2: Selection of particle physics experiments

[^0]
Contents

Introduction

Experimental methods

Accelerators

Spectrometers

Particle detectors
Analysis of data

Particle physics experiments

Accelerate elementary particles, let them collide \rightarrow energy released in the collision is converted into mass of new particles, some of which are unstable

Two ways how to do it:
Fixed target experiments

How to accelerate charged particles?

- Acceleration with electromagnetic waves (typical frequency is 500 MHz - mobile phones run at 900 , 1800, 1900 MHz)
- Waves in a radiofrequency cavity: $\mathrm{c}<\mathrm{c}_{0}$

... Similar to surfing the waves

Electric field

Stability of acceleration

-For a synchronous particles (A): energy loss = energy received from the RF field
-A particle that comes too late (B), gets more energy, the one that is too fast (C), gets less \rightarrow

Synchrotron

Electron position collider: KEK-B

Peter Križan, Ljubljana

Large hadron collider

Interaction region: BaBar

Head-on collisions

ıljana

Interaction region: Belle

Collisions at a finite angle +-11mrad
KEKB Interaction Region

Accelerator figure of merit 1: Center-of-mass energy

If there is enough energy available in the collission, new, heavier particles can be produced.

e.g. LHC, CERN, Tevatron: search for Higgs bosons, $m_{\text {Higgs }}>100 \mathrm{GeV}$

Accelerator figure of merit 2: Luminosity

Observed rate of events = Cross section x Luminosity

$$
\frac{d N}{d t}=L \sigma
$$

Accelerator figures of merit: luminosity L
and integrated luminosity

$$
L_{\mathrm{int}}=\int L(t) d t
$$

Luminosity vs time

$$
R=\mathcal{L} \sigma
$$

(number of events/unit time)
$=$ (cross section) X (luminosity)

$$
\mathcal{L}=\frac{I_{L E R} I_{H E R}}{e^{2} f_{\text {fee }} N_{\text {burch }} A_{\text {eff }}}
$$

A high luminosity is needed for studies of rare processes.

Luminosity: improvement in time

Peter Križan, Ljubljana

How to understand what happened in a collision?

-Measure the coordinate of the point ('vertex') where the reaction occured, and determine the positions and directions of particles that have been produced

- Measure momenta of stable charged particles by measuring their radius of curvature in a strong magnetic field ($\sim 1 \mathrm{~T}$)
-Determine the identity of stable charged particles (e, μ, π, K, p)
-Measure the energy of high energy photons γ

How to understand what happened in a collision?

Peter Križan, Ljubljana

Search for particles which decayed close to the production point

How do we reconstructing final states which decayed to several stable particles (e.g., 1,2,3)?
From the measured tracks calculate the invariant mass of the system ($\mathrm{i}=1,2,3$):

$$
M=\sqrt{\left(\sum E_{i}\right)^{2}-\left(\sum \vec{p}_{i}\right)^{2}}
$$

The candidates for the $X \rightarrow 123$ decay show up as a peak in the distribution on (mostly combinatorial) background.
The name of the game: have as little background under the peak as possible without loosing the events in the peak (=reduce background and have a small peak width). How do we know it was precisely this reaction?
$\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}} \mathrm{J} / \psi$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{S}}^{0} \rightarrow \\
& \mathrm{~J} / \psi \rightarrow \mu^{-} \pi^{+} \\
& \mu^{-} \mu^{+}
\end{aligned}
$$

For $\pi^{-} \pi^{+}$in $\mu^{-} \mu^{+}$pairs we calculate the invariant mass:
$M^{2} c^{4}=\left(E_{1}+E_{2}\right)^{2}-\left(p_{1}+p_{2}\right)^{2}$
Mc^{2} must be for K_{S} close to 0.5 GeV ,
for J / ψ close to 3.1 GeV .

Rest in the histrogram: random coincidences ('combinatorial background')

Experimental aparatus

Detector form: symmetric for colliders with symmetric energy beams; extended in the boost direction for an asymmetric collider; very forward oriented in fixed target experiments.

Example of a fixed target experiment: HERA-B

Peter Križan, Ljubljana

Belle spectrometer at KEK-B

ATLAS at LHC

Components of an experimental apparatus ('spectrometer')

- Tracking and vertexing systems
- Particle identification devices
- Calorimeters (measurement of energy)

Components of an experimental apparatus ('spectrometer')

- Tracking and vertexing systems
- Particle identification devices
- Calorimeters (measurement of energy)

Silicon vertex detector (SVD)

Two coordinates measured at the same

Peter Križan, Ljubljana

Interaction of charged particles with matter

Energy loss due to ionisation: depends on $\beta \gamma$, typically about $2 \mathrm{MeV} / \mathrm{cm} \rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$.
Liquids, solids: few $\mathrm{MeV} / \mathrm{cm}$
Gases: few keV/cm
Primary ionisation: charged particle kicks electrons from atoms.
In addition: excitation of atoms (no free electron), on average need W_{i} (>ionisation energy) to create e-ion pair.
W_{i} typically $30 \mathrm{eV} \rightarrow$ per cm of gas about $2000 \mathrm{eV} / 30 \mathrm{eV}=60$ e-ion pairs

Ionisation

Can this be detected? 120 e-ion pairs make a pulse of $\mathrm{V}=$ ne $/ \mathrm{C}=2 \mathrm{mV}$ (at typical $\mathrm{C}=10 \mathrm{pF}$) $\rightarrow \mathrm{NO}$
-> Need multiplication

Multiplication in gas

Simplest example: cylindrical counter, radial field, electrons drift to the anode in the center

If the energy eEd gained over several mean free paths (d around 10 mm) exceeds the ionisation energy \rightarrow new electron Electric field needed $\rightarrow \mathrm{E}=\mathrm{I} / \mathrm{ed}=10 \mathrm{~V} / \mathrm{mm}=10 \mathrm{kV} / \mathrm{cm}$

Diffusion and mobility of ions

Diffusion: ions loose their enegy in collisions with the gas molecules, thermalize quickly (mean free path around $0.1 \mu \mathrm{~m}$) ; Maxwellian energy distribution.
Localized charge distribution diffuses: fraction of charges in dx after time t

$$
\frac{d N}{N}=\frac{1}{\sqrt{4 \pi D t}} e^{-\frac{x^{2}}{4 D t}} d x
$$

D, diffusion coefficient: typically around $0.05 \mathrm{~cm}^{2} / \mathrm{s}$
The r.m.s. of the distribution for 1D and 3D cases:

$$
\sigma_{x}=\sqrt{2 D t}, \sigma_{V}=\sqrt{6 D t}
$$

Electric field: the Maxwellian distribution changes by very little, ions drift in electric field with an average net (drift) velocity (not instant velocity!) depending linearly on the electric field:

$$
v_{D}{ }^{+}=\mu^{+}(E / p)
$$

μ^{+}: mobility, related to D, $\mathrm{D}^{+} / \mu^{+}=\mathrm{kT} / \mathrm{e}=0.026 \mathrm{~V}$
Typical values for μ^{+}: $1-2 \mathrm{~cm}^{2} \mathrm{~atm} / \mathrm{Vs}$; at $1 \mathrm{kV} / \mathrm{cm}: 1 \mathrm{~cm} / \mathrm{ms}$

\rightarrow Drift velocity of 11110101111 11110 "ाता|| electrons

No simple relation to E field, typical value $5 \mathrm{~cm} / \mu \mathrm{s}$

Few examples:
Argon changes drastically with additives

Methane, ethane, CO_{2}

Methylal, Ethylene

Very useful: in some gas mixtures v_{D} gets saturated

Fig. 26 Drift velocity of electrons in several gases at normal condiseveral gases
tions ${ }^{12}, 22,23$)

Fig. 27 Drift velocity of electrons in methylal $\left[\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{CH}_{2}\right]$ and in ethylene $\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right){ }_{24}\right)$

Multiplication in gas

Electron travels (drifts) towards the anode (wire); close to the wire the electric field becomes high enough (several $\mathrm{kV} / \mathrm{cm}$), the electron gains sufficient energy between two subsequent collisions with the gas molecules to ionize -> start of an avalanche.

Signal development 2

QEdr $=-U_{0}$ Cldu $E=\frac{U_{0} C}{2 \pi \varepsilon_{0}} \frac{1}{r}$
$Q=n M e_{0}$
$u(t)=\int_{0}^{t} d u=-\frac{Q}{2 \pi \varepsilon_{0} l} \ln \frac{r(t)}{a}$
$\frac{d r}{d t}=v=\mu^{+} \frac{E}{p}=\frac{\mu^{+}}{p} \frac{U_{0} C}{2 \pi \varepsilon_{0}} \frac{1}{r}$
$\int_{a}^{r} r d r=\frac{\mu^{+}}{p} \frac{U_{0} C}{2 \pi \varepsilon_{0}} \int_{0}^{t} d t$
$r(t)=\sqrt{a^{2}+\frac{\mu^{+}}{p} \frac{U_{0} C}{\pi \varepsilon_{0}} t}=a \sqrt{1+\frac{t}{t_{0}}}$
$t_{0}=\frac{\pi \varepsilon_{0} p}{\mu^{+} U_{0} C}\left(b^{2}-a^{2}\right) \approx 500 \mu s$

The work of the electric force on the ions drifting in the electric field, Qedr, is supplied by the generator: charge Cldu flows through the HV source with high voltage $U_{0}(C=$ cap. per unit length).

Note: Electrons are produced very close to the anode, drift over a small potential difference -> contribute very little to the signal (1\%)

Signal development 3

Time evolution of the signal

$$
u(t)=-\frac{Q}{4 \pi \varepsilon_{0} l} \ln \left(1+\frac{t}{t_{0}}\right)
$$

with no RC filtering ($\tau=$ inf.) and with time constants 10μ s and $100 \mu \mathrm{~s}$.

If faster signals are needed \rightarrow smaller time constants \rightarrow smaller signals e.g. $\tau=40 \mathrm{~ns}:$ max $u(t)$ is about $1 / 4$ of the $\tau=$ inf. case

Multiwire proportional chamber (MWPC)

The address of the fired wire gives only 1-dimensional information.

Normally digital readout: spatial resolution limited to $\sigma=d / \sqrt{ } 12$
for $\mathrm{d}=1 \mathrm{~mm} \rightarrow \sigma=300 \mathrm{~mm}$

Revolutionized particle physics experiments
\rightarrow Nobel prize for G. Charpak
$\boldsymbol{\wedge}$

Peter Križan, Ljubljana

Drift chamber

Improve resolution by measureing the drift time of electrons

Drift chamber: resolution

Resolution determined by

- diffusion,
- primary ionisation statistics,
- electronics,
- path fluctuations.

Diffusion: $\quad \sigma_{x} \propto \sqrt{D t} \propto \sqrt{x}$
Primary ionisation statistics: if e-ion pairs are produced over distance L, the probability that the first one is produced at x from the wire is $\mathrm{e}^{-\mathrm{n} \times / L}$

Resolution as a function of drift distance

Peter Križan, Ljubljana

Drift chamber with small cells
One big gas volume, small cells defined by the anode and field shaping (potential) wires

Drift chamber with small cells

Example: ARGUS drift chamber with axial and 'stereo' wires (at an angle to give the hit position along the main axis)

Typical event in two projections

Single cell drift chamber

Simplify manufacturing: put each wire in a tube (straw or hexagonal); useful for large areas.

Cells can be several meters long!

Diffusion and mobility of electrons in magnetic field

E perpendicular to B

Lorentz force perpendicular to $B \rightarrow$ net drift at an angle α to E $\operatorname{tg} \alpha=\omega \tau$
α : Lorentz angle
ω : cyclotron frequency, $\omega=\mathrm{eB} / \mathrm{m}$
τ : mean time between collisions

Drift lines in a radial E field (dash-dotted)
Isochrones (full lines)

Diffusion and mobility of electrons in magnetic field 2

E and B parallel:

drift along E , diffusion in the transverse direction reduced! departing electrons get curled back:

$$
D_{T}(B)=D_{0} /\left(1+\omega^{2} \tau^{2}\right)
$$

\rightarrow Less diffusion in the tranversal direction!

3-dimensional information: drift over a large distance, 2 dim. read-out at one side

Diffusion: no problem for the tranverse coordinate in spite of the very long drift distance because B parallel to E (drift direction).
… \boldsymbol{m}_{10}
z coordinate (along the E, B field): from drift time
2 dim. read-out at one side:
-Anode wires and cathode pads
-Anode wires and cathode strips (perpendicular)
Resolutions for the ALEPH TPC ($\mathrm{d}=3.6 \mathrm{~m}, \mathrm{~L}=4.4 \mathrm{~m}$):
in x, y : 173 mm , in z : 740 mm .

Potential problems:
-need an excellent drift velocity monitoring (long drift distance)
-high quality gas (long drift distance)
-space charge: ions drifting back to the cathode

Components of an experimental apparatus ('spectrometer')

- Tracking and vertexing systems
- Particle identification devices
- Calorimeters (measurement of energy)

Why Particle ID?

Particle identification is an important aspect of particle, nuclear and astroparticle physics experiments.

Some physical quantities in particle physics are only accessible with sophisticated particle identification (Bphysics, CP violation, rare decays, search for exotic hadronic states).

Nuclear physics: final state identification in quark-gluon plasma searches, separation between isotopes

Astrophysics/astroparticle physics: identification of cosmic rays - separation between nuclei (isotopes), charged particles vs high energy photons

Introduction: Why Particle ID?

Example 1: B factories
Particle identification reduces combinatorial background by ~3x

Introduction: Why Particle ID?

Example 2: HERA-B

$\mathrm{K}^{+} \mathrm{K}^{-}$invariant mass.
The $\phi \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$decay only becomes visible after particle identification is taken into account.

Particle identification systems in Belle

Efficiency and purity in particle identification

Efficiency and purity are tightly coupled!
Two examples:

eff. vs fake probability

some discriminating variable

Identification of charged particles

Particles are identified by their mass or by the way they interact.
Determination of mass: from the relation between momentum and velocity, $\mathrm{p}=\gamma \mathrm{mv}$.
Momentum known (radius of curvature in magnetic field)
\rightarrow Measure velocity:
time of flight
ionisation losses dE/dx
Cherenkov angle
transition radiation
Mainly used for the identification of hadrons.

Identification through interaction: electrons and muons

Time-of-flight measurement (TOF)

Measure time difference over a known distance, determine velocity

Fig. 6.5. Working principle of time-of-flight measurement.

Time-of-flight measurement 2

Time difference between two particle species for path length $=1 \mathrm{~m}$

Required resolution, example:
π / K difference at $1 \mathrm{GeV} / \mathrm{c}$: 300ps
For a 3σ separation need σ (TOF) $=100 \mathrm{ps}$

Resolution contributions:
-PMT: transient time spread (TTS)
-Path length variation
-Momentum uncertainty

Very fast: MCP-PMT

Microchannel plate (MCP) PMT: multi-anode PMT with two MCP stages

Identification with $\mathrm{dE} / \mathrm{dx}$ measurement

$\mathrm{dE} / \mathrm{dx}$ is a function of velocity. For particles with different mass the Bethe-Bloch curve gets displaced \rightarrow separation is possible if the resolution is good enough

Problem: long tails

Identification with $\mathrm{dE} / \mathrm{dx}$ measurement

$\mathrm{dE} / \mathrm{dx}$ performance in two large drift chambers.

Čerenkov radiation

A charged track with velocity $v=\beta c$ above the speed of light c / n in a medium with index of refraction $n=\sqrt{ } \varepsilon$ emits polarized light at a characteristic (Čerenkov) angle,

$$
\cos \theta=c / n v=1 / \beta n
$$

Two cases:

1) $\beta<\beta_{\mathbf{t}}=1 / \mathrm{n}$: below threshold no Čerenkov light is emitted.
2) $\quad \beta>\beta_{t}$: the number of Čerenkov photons emitted over unit photon energy $E=h v$ in a radiator of length L amounts to

$$
\frac{d N}{d E}=\frac{\alpha}{\hbar c} L \sin ^{2} \theta=370(\mathrm{~cm})^{-1}(e V)^{-1} L \sin ^{2} \theta
$$

Number of detected photons

Example: in 1 m of air ($\mathrm{n}=1.00027$) a track with $\beta=1$ emits $\mathrm{N}=41$ photons in the spectral range of visible light ($\Delta \mathrm{E} \sim 2 \mathrm{eV}$).
If Čerenkov photons were detected with an average detection efficiency of $\varepsilon=0.1$ over this interval, $N=4$ photons would be measured.
In general: number of detected photons can be parametrized as $\mathbf{N}=\mathbf{N}_{\mathbf{0}} \mathbf{L} \boldsymbol{\operatorname { s i n }}^{2} \theta$
where N_{0} is the figure of merit, $N_{0}=\frac{\alpha}{\hbar c} \int Q(E) T(E) R(E) d E$
and Q T R is the product of photon detection efficiency, transmission of the radiator and windows and reflectivity of mirrors employed.
Typically: $\quad \mathrm{N}_{0}=50-100 / \mathrm{cm}$

Cherenkov counters

Threshold counters --> count photons to separate particles below and above threshold; for $\beta<\beta_{\mathrm{t}}=1 / \mathrm{n}$ (below threshold) no Čerenkov light is emitted

Ring Imaging (RICH) --> measure Čerenkov angle and count photons

Short historical excursion

- 1934 Čerenkov characterizes the radiation
- 1938 Frank, Tamm give the theoretical explanation
- 50-ties - 70-ties Čerenkov counters are developed and are being used in nuclear and particle physics experiments, as differential and threshold counters
- 1958: Nobel prize for Čerenkov
- 1977 Ypsilantis, Seguinot introduce the idea of a RICH counter with a large area wire chamber based photon detector
- 1981-83 first use of a RICH counter in a particle physics experiment (E605)
- 1992--> first results from the DELPHI RICH, SLD CRID, OMEGA RICH

Belle ACC (aerogel Cherenkov counter): threshold Čerenkov counter

K (below thr.) vs. π (above thr.): adjust n

Detector unit: a block of aerogel and two fine-mesh PMTs

measured for $2 \mathrm{GeV}<\mathrm{p}<3.5 \mathrm{GeV}$ expected, measured ph. yield

Belle ACC (aerogel Cherenkov counter): threshold Cherenkov counter

K (below thr.) vs. π (above thr.): adjust n for a given angle kinematic region (more energetic particles fly in the 'forward region')

Measuring Cherenkov angle

RICH counter 2

From the image on the photon detector, the Čerenkov angle of the track can be reconstructed, i.e. from the known track direction (ring center) and hit coordinate the angle is calculated and plotted for each individual photon

Photon detection in RICH counters

RICH counter: measure photon impact point on the photon detector surface
\rightarrow detection of single photons with

- sufficient spatial resolution
- high efficiency and good signal-to-noise ratio
- over a large area (square meters)

Special requirements:

- Operation in magnetic field
- High rate capability
- Very high spatial resolution
- Excellent timing (time-of-arrival information)

-Excellent single photon pulse height spectrum
-Low noise

Multiple radiators: LHCb RICHes

Need:
-Particle identification for momentum range ~2-100 GeV/c
-Cannot cover such a kinematic range with a single RICH
$\rightarrow 3$ radiators
(aerogel, $\mathrm{CF}_{4}, \mathrm{C}_{4} \mathrm{~F}_{10}$)

LHCb RICHes

RICH 2

LHCb RICHes

Resolution of a RICH counter

-Photon impact point resolution (photon detector resolution
-Emission point uncertainty
-Dispersion: $\mathrm{n}=\mathrm{n}(\lambda)$ in $\cos \theta=1 / \beta n$
-Track parameters

- Errors of the optical system

Radiator with multiple refractive indices

How to increase the number of photons without degrading the resolution?

4 cm aerogel single index

$2+2 \mathrm{~cm}$ aerogel

Focusing configuration - data

theta cerenkov

DIRC: Detector of Internally Reflected Cherekov photons

DIRC: a special kind of RICH (Ring Imaging Cherenkov counter)
where Čerenkov photons trapped in a solid radiator (e.q. quartz) are propagated along the radiator bar to the side, and detected as they exit and traverse a gap.

DIRC performance

Babar DIRC: a Bhabha event $\mathrm{e}^{+} \mathrm{e}^{-}-->\mathrm{e}^{+} \mathrm{e}^{-}$

To check the performance, use kinematically selected decays: D^{*+} $->\pi^{+} D^{0}, D^{0}->K^{-} \pi^{+}$

IIIT-1 1111
 IIII
 Time-Of-Propagation (TOP) counter

Similar to DIRC, but instead of two coordinates measure:

- One (or two coordinates) with a few mm precision
- Time-of-arrival
\rightarrow Excellent time resolution < ~40ps required for single photons in 1.5T B field

TOP image

Transition radiation detectors

X rays emitted at the boundary of two media with different refractive indices, emission angle $\sim 1 / \gamma$
Emission rate depends on γ (Lorentz factor): becomes important at $\gamma \sim 1000$

- Electrons at 0.5 GeV
- Pions, muons above 100 GeV

In between: discrimination e vs pions, mions

Detection of X rays: high Z gas - Xe

Few photons per boundary can be detected
Need many boundaries

- Stacks of thin foils or

- Porous materials - foam with many boundaries of individual 'bubbles'

Transition radiation - 1

Separation of X ray detection high energy deposit on one place - against ionisation losses

Fig. 6.25. Energy-loss distribution of 15 GeV electrons and pions in a transition radiation detector [467].

Fig. 6.26. Principle of separating ionization energy loss from the energy loss from emission of transition radiation photons.

Transition radiation - 3

Example of performance 2
Radiator: organic foam between the detector tubes (straws made of capton foil)

Rejection with magnetic field 0.8T, threshold 17

Peter Križan, Ljubljana

Small circles: low threshold (ionisation), big circles: high threshold (X ray detection)

Transition radiation detector in ATLAS: combination of a tracker and a transition radiation detector

ATLAS TRT: combination of Transition Radiation detector and a Tracker

Radiator: 3mm thick layers made of polypropylene-polyethylene fibers with ~ 19 micron diameter, density: $0.06 \mathrm{~g} / \mathrm{cm}^{3}$

Straw tubes: 4 mm diameter with 31 micron diameter anode wires, gas: $70 \% \mathrm{Xe}, 27 \% \mathrm{CO}_{2}, 3 \% \mathrm{O}_{2}$.

Particle identification:
 Comparison of methods

Time-of-flight dE/dx measurement Čerenkov counters
Transition radiation counters

Compare by calculating the length of detector needed for a given separation (3б)

Fig. 14. Pion-kaon separation by different PID methods: the length of the detectors needed for 3 sigma separation.

Fig. 15. The same as Fig. 14 for electron-pion separation.

PID coverage of kaon/pion spectra

Tagging Kaons

$B \rightarrow D K$

Peter Križan, Ljubljana

PID coverage of kaon/pion spectra

Peter Križan, Ljubljana

Separate muons from hadrons (pions and kaons): exploit the fact that muons interact only electromag., while hadrons interact strongly \rightarrow need a few interaction lengths to stop hadrons (interaction lengths $=$ about 10x radiation length in iron, 20x in CsI). A particle is identified as muon if it penetrates the material.

Detect K_{L} interaction (cluster): again need a few interaction lengths.

Some numbers: 0.8 interaction length (CsI) + 3.9 interaction lengths (iron) Interaction length: iron $132 \mathrm{~g} / \mathrm{cm}^{2}$, CsI $167 \mathrm{~g} / \mathrm{cm}^{2}$ $(\mathrm{dE} / \mathrm{dx})_{\min }: \quad$ iron $1.45 \mathrm{MeV} /\left(\mathrm{g} / \mathrm{cm}^{2}\right), \mathrm{CsI} 1.24 \mathrm{MeV} /\left(\mathrm{g} / \mathrm{cm}^{2}\right)$
$\rightarrow \Delta \mathrm{E}_{\text {min }}=(0.36+0.11) \mathrm{GeV}=0.47 \mathrm{GeV} \rightarrow$ reliable identification of muons possible above ~600 MeV

Muon and K_{L} detector

Up to 21 layers of resistive-plate chambers (RPCs) between iron plates of flux return

Bakelite RPCs at BABAR
Glass RPCs at Belle (better choice)

Muon and K_{L} detector

Example:

event with
-two muons and a

- K ${ }_{L}$
and a pion that partly penetrated

Muon and K_{L} detector performance

Muon identification: efficient for $\mathrm{p}>800 \mathrm{MeV} / \mathrm{c}$

Fig. 109. Muon detection efficiency vs. momentum in KLM.
fake probability

Fig. 110. Fake rate vs. momentum in KLM.

Muon and K_{L} detector performance

K_{L} detection: resolution in direction
K_{L} detection: also with possible with electromagnetic calorimeter (0.8 interactin lengths)

Fig. 107. Difference between the neutral cluster and the direction of missing momentum in KLM.

Identification of muons at LHC - example ATLAS

Peter Križan, Ljubljana

Identification of muons in ATLAS

Muon spectrum

Muon identification in ATLAS

Material in front of the muon system

Figure 5.2: Cumulative amount of material, in units of interaction length, as a function of $|\eta|$, in front of the electromagnetic calorimeters, in the electromagnetic calorimeters themselves, in each hadronic layer, and the total amount at the end of the active calorimetry. Also shown for completeness is the total amount of material in front of the first active layer of the muon spectrometer (up to $|\eta|<3.0$).

Muon identification efficiency

Figure 10.37: Efficiency for reconstructing muons with $p_{T}=100 \mathrm{GeV}$ as a function of $|\eta|$. The results are shown for stand-alone reconstruction, combined reconstruction and for the combination of these with the segment tags discussed in the text.

Figure 10.38: Efficiency for reconstructing muons as a function of p_{T}. The results are shown for stand-alone reconstruction, combined reconstruction and for the combination of these with the segment tags discussed in the text.

Neutrino detection

Use inverse beta decay

$$
\begin{aligned}
& v_{\mathrm{e}}+\mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-} \\
& \bar{v}_{\mathrm{e}}+\mathrm{p} \rightarrow \mathrm{n}+\mathrm{e}^{+} \\
& v_{\mu}+\mathrm{n} \rightarrow \mathrm{p}+\mu^{-} \\
& \bar{v}_{\mu}+\mathrm{p} \rightarrow \mathrm{n}+\mu^{+} \\
& v_{\tau}+\mathrm{n} \rightarrow \mathrm{p}+\tau^{-} \\
& \bar{v}_{\tau}+\mathrm{p} \rightarrow \mathrm{n}+\tau^{+}
\end{aligned}
$$

However: cross section is very smal!!
$6.410^{-44} \mathrm{~cm}^{2}$ at 1 MeV
Probability for interaction in 100 m of water $=410^{-16}$

Not much better at high energies:
$0.6710^{-38} \mathrm{E} / 1 \mathrm{GeV}$ cm ${ }^{2}$ per
nucleon
At 100 GeV , still 11 orders below the proton-proton cross section

Superkamiokande: an example of a neutrino detector

MC simulation: $\mathrm{H} \rightarrow 4 \mu$ (ATLAS)

Superkamiokande: detection of electrons and muons

The muon or electron emits Cerenkov light \rightarrow ring at the detector walls
\bullet Muon ring: sharp edges
-Electron ring: smeared

Superkamiokande: detection of neutrinos by measureing Cherenkov photons

Light detectors: HUGE photomultiplier tubes

M. Koshiba

Muon vs electron

Cherenkov photons from a muon track:

Example: 1 GeV muon neutrino
Track length of the resulting muon:
$\mathrm{L}=\mathrm{E} /(\mathrm{dE} / \mathrm{dx})=$
$=1 \mathrm{GeV} /(2 \mathrm{MeV} / \mathrm{cm})=5 \mathrm{~m}$
\rightarrow a well defined "ring" on the walls

Superkamiokande: muon event

Muon 'ring' as seen by the photon detectors

Muon event: photon detector cillinder walls

Cherenkov photons from an electron track

Electron starts a shower!
Cherenkov photons from an electron generated shower
Example: 1 GeV el. neutrino
Shower length:
$\mathrm{L}=\mathrm{X}_{0}{ }^{*} \log _{2}\left(\mathrm{E} / \mathrm{E}_{\text {crit }}\right)=$ $36 \mathrm{~cm}^{*} \log _{2}(1 \mathrm{GeV} / 10 \mathrm{MeV})$ $=2.5 \mathrm{~m}$

Shower particles are not parallel to each other
-> a blurred, less well defined "ring" on the walls

Electron event: blurred ring

Detection of τ neutrinos

$$
v_{\tau}+\mathbf{n} \rightarrow \mathbf{p}+\tau^{-} \quad \tau^{-} \rightarrow \mu^{-} v_{\mu} v_{\tau}
$$

- Detect and identifiy mion
- Extrapolate back
- Check for a 'kink' in the sensitive volume -

Peter Križan, Ljubljana

Detection unit: a brick with 56 Pb sheets (1 mm) +57 emulsion films

Detection of very high energy neutrinos (from galactic sources)

The expected fluxes are very low:
Need really huge volumes of detector medium!
What is huge? From $(100 \mathrm{~m})^{3}$ to $(1 \mathrm{~km})^{3}$
Also needed: directional information.

Again use: $v_{\mu}+n->p+\mu^{-} ; \mu$ direction coincides with the direction of the high energy neutrino.

AMANDA: use the Antarctic ice instead of water

Normal ice is not transparent due to Rayleigh scattering on inhomogenuities (air bubbles)
At high pressures (large depth) there is a phase transition, bubbles get partly filled with water-> transparent!
Originally assumed: below 800m OK; turned out to be much deeper.

AMANDA

1993 First strings AMANDA A

1998 AMANDA B10 ~ 300 Optical Modules 2000 AMANDA II ~ 700 Optical Modules
2010 ICECUBE 4800 Optical Modules

AMANDA

1500 m

Amundsen-Scott South Pole station

Reconstruction of direction and energy of incident high energy muon netrino

For each event:
Measure time of arrival on each of the tubes

Cherenkov angle is known: $\cos \theta=1 / n$

Reconstruct muon track
Track direction -> neutrino direction

Track length -> neutrino energy

AMANDA

Example of a detected event, a muon entering the PMT array from below

Analysis of data

If we have N independent (unbiased) measurements x_{i} of some unknown quantity μ with a common, but unknown, variance σ^{2}, then

$$
\begin{aligned}
\widehat{\mu} & =\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\widehat{\sigma^{2}} & =\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\widehat{\mu}\right)^{2}
\end{aligned}
$$

are unbiased estimates of μ and σ^{2}. The errors of the estimates are

- for $\mu: \sigma / \sqrt{ } N$
- for $\sigma: \sigma / \sqrt{ }(2 N)$ (for Gaussian distributed x_{i} and large N)

Analysis of data 2: unbinned likelihood fit

Assume now that we have N independent (unbiased) measurements x_{i} that come from a probability density function (p.d.f.) $f(x ; \theta)$, where $\theta=\left(\theta_{1}, \ldots . \theta_{m}\right)$ is a set of m parameters whose values are unknown. The method of maximum likelihood takes the estimators θ to be those values of θ that maximize the likelihood function,

$$
L(\boldsymbol{\theta})=\prod_{i=1}^{N} f\left(x_{i} ; \boldsymbol{\theta}\right) .
$$

It is easier to minize $\ln L$ (same minimum) \rightarrow a set of m equations

$$
\frac{\partial \ln L}{\partial \theta_{i}}=0, \quad i=1, \ldots, n .
$$

Analysis of data 3

The errors and correlations between parameters $\theta=\left(\theta_{1}, \ldots . \theta_{\mathrm{m}}\right)$ can be found from the inverse of the covariance matrix

$$
\left(\widehat{V}^{-1}\right)_{i j}=-\left.\frac{\partial^{2} \ln L}{\partial \theta_{i} \partial \theta_{j}}\right|_{\widehat{\theta}}
$$

The variance σ^{2} on the paramter θ_{i} is V_{ii}

Analysis of data 4: binned likelihood fit

If the sample is large (high n), data can be grouped in a histogram. The content of each bin, n_{i}, is distributed according to the Poisson distribution with mean $v_{i}(\theta)$,

$$
f\left(v_{\mathbf{i}}(\theta), n_{i}\right)=v_{\mathbf{i}}(\theta)^{n \mathrm{i}} \exp \left(-v_{\mathbf{i}}(\theta)\right) / \mathrm{n}_{\mathbf{i}}!
$$

The parameters θ are determined by maximizing a properly normalized likelihood function

$$
-2 \ln \lambda(\boldsymbol{\theta})=2 \sum_{i=1}^{N}\left[\nu_{i}(\boldsymbol{\theta})-n_{i}+n_{i} \ln \frac{n_{i}}{\nu_{i}(\boldsymbol{\theta})}\right]
$$

In the limit of zero bin width, maximizing this expression is equivalent to maximizing the unbinned likelihood function.

Analysis of data 5: least squares method

If we have N independent measurements of variable y_{i} at points \mathbf{x}_{i}, and if y_{i} are Gaussian distributed around a mean $F\left(x_{i}, \theta\right)$ with variance σ_{i}^{2}, the log likelihood function yields

$$
\chi^{2}(\boldsymbol{\theta})=-2 \ln L(\boldsymbol{\theta})+\text { constant }=\sum_{i=1}^{N} \frac{\left(y_{i}-F\left(x_{i} ; \boldsymbol{\theta}\right)\right)^{2}}{\sigma_{i}^{2}}
$$

and the parameters θ are determined by minimizing this expression.
This weighted sum of squares can be used in a general case of a non-Gaussian distribution \rightarrow Least squares method

Analysis of data 6: least squares method

The value of χ^{2} at the minimum is an indication of the goodness of fit. The mean of χ^{2} should be equal to the number of degrees of freedom, $\mathrm{n}=\mathrm{N}-\mathrm{m}$, where m is the number of parameters.
Popular: quote χ^{2} / n

Probability that the fit would give χ^{2} / n bigger than the observed value

Contents of this course

-Lecture 1: Introduction, experimental methods, detectors, data analysis
-Lecture 2: Selection of particle physics experiments

http://www-f9.ijs.si/~krizan/sola/nagoya-ise/
 -Slides
 -Literature

Backup slides

Gas mixtures for drift chambers and MWPCs

Main component: a gas with a low average ionisation energy W_{i} nobel gases have less degrees of freedom.

Add to this:
-A component which absorbs photons ('quencher') produced in the avalanche (deexcitation of atoms and ions) - an organic molecule with a lot of degrees of freedom: isobutane, methane, CO_{2}, ethane
-A component which prevents that ionized organic molecules would travel to the cathode, stop there, and polymerize to form poorly conductive layers: a gas which has a low ionisation energy - methylal
-A small concentration of an electronegative gas (freon, ethylbromide) which prevents the electrons travel too far (to prevent that electrons which escaped from the cathode start new avalanches) allows to work at high gains (107)
'Magic mixture': 72\% Ar, 23.5\% isobutane, 4\% methylal, 0.5\% freon

Time-of-flight measurement 3

Resolution of a PMT: transient time spread (TTS), time variation for single photons

Tubes for TOF have to be optimized for small TTS.
Main contribution after the optimisation: photoelectron time spread before it hits the first dynode.

Estimate: take two cases, one with $\mathrm{T}=1 \mathrm{eV}$ and the other with $\mathrm{T}=0$ after the photoelectron leaves the photocathode; take $U=200 \mathrm{~V}$ and $\mathrm{d}=10 \mathrm{~mm}$
$\mathrm{T}=1 \mathrm{eV}: \mathrm{v}_{0}=\sqrt{ }(2 \mathrm{~T} / \mathrm{m})=0.002 \mathrm{c}, \mathrm{a}=\mathrm{F} / \mathrm{m}=200 \mathrm{eV} /\left(10 \mathrm{~mm} 0.510^{6} \mathrm{eV} / \mathrm{c}^{2}\right)$
$d=v_{0} t+a t^{2} / 2 \rightarrow t=\sqrt{ }\left(2 d / a+\left(v_{0} / a\right)^{2}\right)-v_{0} / a$
$\mathrm{T}=0 \mathrm{eV}: \mathrm{v}_{0}=0 \rightarrow \mathrm{t}=\sqrt{ }(2 \mathrm{~d} / \mathrm{a})=2.3 \mathrm{~ns}$
Time difference: 170ps is a typical value.
Good tubes: $\sigma(T T S)=100 p s$
For \mathbf{N} photons: $\sigma \sim \sigma(T T S) / \sqrt{ }(\mathbf{N})$

TOF capability: window photons

Expected number of detected Cherenkov photons emitted in the PMT window (2 mm) is ~ 15
\rightarrow Expected resolution ~35 ps

TOF test with pions and protons at $2 \mathrm{GeV} / \mathrm{c}$. Distance between start counter and MCP-PMT is 65 cm
\rightarrow In the real detector $\sim 2 \mathrm{~m}$
$\rightarrow 3 x$ better separation

Components of an experimental apparatus ('spectrometer')

- Tracking and vertexing systems
- Particle identification devices
- Calorimeters (measurement of energy)

Calorimetry Design: B factories

Requirements

-Best possible energy and position resolution: 11 photons per $\mathrm{Y}(4 \mathrm{~S})$ event; 50% below 200 MeV in energy
-Acceptance down to lowest possible energies and over large solid angle
-Electron identification down to low momentum

Constraints

- Cost of raw materials and growth of crystals
-Operation inside magnetic field
-Background sensitivity

I mplementation

Thallium-doped Cesium-Iodide crystals with 2 photodiodes per crystal
Thin structural cage to minimize material between and in front of crystals

Calorimetry: BaBar

6580 CsI(TI) crystals with photodiode readout

About $18 \mathrm{X}_{0}$, inside solenoid

$$
\begin{aligned}
\frac{\sigma(E)}{E}= & \frac{(2.32 \pm 0.03 \pm 0.3) \%}{\sqrt[4]{E}} \oplus \\
& (1.85 \pm 0.07 \pm 0.1) \%
\end{aligned}
$$

Belle central drift chamber

-50 layers of wires (8400 cells) in 1.5 Tesla magnetic field
-Helium:Ethane 50:50 gas, Al field wires, CF inner wall with
cathodes, and preamp only on endplates
-Particle identification from ionization loss (5.6-7\% resolution)

Tracking: BaBar drift chamber

40 layers of wires (7104 cells) in 1.5 Tesla magnetic field Helium:Isobutane 80:20 gas, Al field wires, Beryllium inner wall, and all readout electronics mounted on rear endplate

Particle identification from ionization loss (7\% resolution)

TRT performance

at 90\% electron efficiency

Figure 10.25: Average probability of a highthreshold hit in the barrel TRT as a function of the Lorentz γ-factor for electrons (open squares), muons (full triangles) and pions (open circles) in the energy range $2-350 \mathrm{GeV}$, as measured in the combined test-beam.

Figure 10.26: Pion efficiency shown as a function of the pion energy for 90% electron efficiency, using high-threshold hits (open circles), time-over-threshold (open triangles) and their combination (full squares), as measured in the combined test-beam.

ATLAS: muon fake probability

Sources of fakes:
-Hadrons: punch through negligible, >10 interaction legths of material in front of the muon system (remain: muons from pion and kaon decays)
-Electromagnetic showers triggered by energetic muons traversing the calorimeters and support structures lead to low-momentum electron and positron tracks, an irreducible source of fake stand-alone muons. Most of them can be rejected by a cut on their transverse momentum (pT > 5 GeV reduces the fake rate to a few percent per triggered event); can be almost entirely rejected by requiring a match of the muon-spectrometer track with an inner-detector track.

- Fake stand-alone muons from the background of thermal neutrons and low energy g-rays in the muon spectrometer ("cavern background"). Again: pT $>5 \mathrm{GeV}$ reduces this below 2% per triggered event at $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. Can be reduced by almost an order of magnitude by requiring a match of the muon-spectrometer track with an inner-detector track.

[^0]: http://www-f9.ijs.si/~krizan/sola/nagoya-ise/

 - Slides
 - Literature

