Heavy Flavors I

Peter Križan

University of Ljubljana and J. Stefan Institute

University
of Ljubljana

Contents

-Flavor physics: introduction, with a little bit of history

- Flavor physics at B factories: CP violation
-Flavor physics at B factories: rare decays and searches for NP effects
- Super B factory
-Flavor physics at hadron machines: history, LHCb and LHCb upgrade

Contents, this lecture

-Flavor physics: introduction, with a little bit of history
-Flavor physics at B factories: CP violation
-Flavor physics at B factories: rare decays and searches for NP effects

- Super B factory
-Flavor physics at hadron machines: history, LHCb and LHCb upgrade

Flavour physics

Flavour physics

... is about

- quarks
and
- their weak transitions and mixing
- CP violation

Flavour physics - origins

Discovery of strange particles K and Λ (readily produced in pairs just like pions and protons - strong interaction, slow decay - weak interaction)
Difference in $\mathrm{K}^{-} \rightarrow \mu^{-} v$ and $\pi^{-} \rightarrow \mu^{-} v$ decay rates:
\rightarrow u quark couples to $\mathrm{d} \cos \theta_{\mathrm{C}}+\mathrm{s} \sin \theta_{\mathrm{C}}$
(N. Cabbibo, 1963)

Flavour physics - origins

The smallness of $\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$(neutral current transition $\mathrm{s} \rightarrow$ d) vs. $\mathrm{K}^{-} \rightarrow \mu^{-} v$ (charged current $\mathrm{s} \rightarrow \mathrm{u}$) by many orders of magnitude: can be solved if there is one more quark (c) - c quark couples to -d $\sin \theta_{C}+s \cos \theta_{c}$
Glashow-Iliopoulos-Maiani (GIM) mechanism forbids flavor changing neutral current (FCNC) transitions at tree level

From a measurement of the K^{0} - anti- ${ }^{0}$ mixing frequency $\Delta \mathrm{m}_{\mathrm{K}}=\mathrm{m}\left(\mathrm{K}_{\mathrm{L}}\right)-\mathrm{m}\left(\mathrm{K}_{\mathrm{S}}\right)$ we can estimate the charm quark mass

\rightarrow c quark discovered in 1974!

u and c

 couple in weak interactions to rotated d and s$\sin \theta_{\mathrm{C}}=0.22$

Flavour physics and CP violaton

Discovery of CP violation in $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}$decays (Fitch, Cronin, 1964)
Kobayashi and Maskawa (1973): to accommodate CP violation into the Standard Model, need three quark generations, six quarks

Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Flavour physics and CP violaton

Kobayashi and Maskawa (1973): to accommodate CP violation into the Standard Model, need three quark generations, six quarks (at the time when only u, d, and s were known!)

The missing quarks were found, one by one, in 1974, in 1977, and in 1994.
How to test the CP violation part of their theory?
Nature was kind, made sure there is enough mixing in the B meson system

CP Violation

Fundamental quantity: distinguishes matter from anti-matter.

A bit of history:

- First seen in K decays in 1964
- Kobayashi and Maskawa propose in 1973 a mechanism to fit it into the Standard Model
- Discovery of a large B-anti-B mixing at ARGUS in 1987 indicated that the effect could be large in B decays (I.Bigi and T.Sanda)
- Many experiments were proposed to measure CP violation in B decays, some general purpose experiments tried to do it
- Measured in the B system in 2001 by the two dedicated spectrometers Belle and BaBar at asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$colliders B factories

What happens in the B meson system?

Why is it interesting? Need at least one more system to understand the mechanism of CP violation.

Kaon system: not easy to understand what is going on at the quark level (light quark bound system, large dimensions).
B has a heavy quark, a smaller system, and is easier for interpreting the experimental results.

First B meson studies were carried out in 70 s at $\mathrm{e}^{+} \mathrm{e}^{-}$colliders with c.m.s. energies $\sim 20 \mathrm{GeV}$, considerably above threshold (~2x5.3GeV)
B meson decays: mainly through $a b \rightarrow c$ transition, with a relative strength of V_{cb}

B mesons: long lifetime

Isolate samples of high- p_{T} leptons (155 muons, 113 electrons) wrt thrust axis
Measure impact parameter δ wrt interaction point

Lifetime implies: \mathbf{V}_{cb} small
MAC: ($1.8 \pm 0.6 \pm 0.4$)ps
Mark II: (1.2 $\pm 0.4 \pm 0.3$)ps
Integrated luminosity at
29 GeV: 109 (92) pb-1~3,500 bb pairs

MAC, PRL 51, 1022 (1983)
MARK II, PRL 51, 1316 (1983)

Systematic studies of B mesons: at Y(4s)

Peter Križan, Ljubljana

Systematic studies of B mesons at $\mathrm{Y}(4 \mathrm{~s})$

$80 \mathrm{~s}-90 \mathrm{~s}$: two very successful experiments:
-ARGUS at DORIS (DESY)
-CLEO at CESR (Cornell)
Magnetic spectrometers at $\mathrm{e}^{+} \mathrm{e}^{-}$ colliders ($5.3 \mathrm{GeV}+5.3 \mathrm{GeV}$ beams)
Large solid angle, excellent tracking and good particle identification (TOF, dE/dx, EM calorimeter, muon chambers).

Argus: part of the group in 1988(?)

... and 20 years later

Mixing in the B^{0} system

1987: ARGUS discovers $B B$ mixing: B^{0} turns into anti- B^{0}

Reconstructed event

$$
\chi_{d}=0.17 \pm 0.05
$$

ARGUS, PL B 192, 245 (1987) cited >1000 times.

Time-integrated mixing rate: 25 like sign, 270 opposite sign dilepton events Integrated $\mathrm{Y}\left(4 \mathrm{~S}\right.$) luminosity 1983-87: $103 \mathrm{pb}^{-1} \sim 110,000 \mathrm{~B}$ pairs

Mixing in the B^{0} system

$$
\begin{aligned}
& \Delta m \propto \\
&\left|V_{t b}^{*} V_{t d}\right|^{2} m_{t}^{2} \propto \lambda^{6} m_{t}^{2} \\
&\left|V_{c b}^{*} V_{c d}\right|^{2} m_{c}^{2} \propto \lambda^{6} m_{c}^{2}
\end{aligned}
$$

Large mixing rate \rightarrow high top mass (in the Standard Model)

The top quark has only been discovered seven years later!

Systematic studies of B mesons at $\mathrm{Y}(4 \mathrm{~s})$

ARGUS and CLEO: In addition to mixing many important discoveries or properties of

- B mesons
- D mesons
- τ^{-}lepton
- and even a measurement of ν_{τ} mass.

After ARGUS stopped data taking, and CESR considerably improved the operation, CLEO dominated the field in late 90s (and managed to compete successfully even for some time after the B factories were built).

Studies of B mesons at LEP

90s: study B meson properties at the Z^{0} mass by exploiting -Large solid angle, excellent tracking, vertexing, particle identification
-Boost of B mesons \rightarrow time evolution (lifetimes, mixing)
-Separation of one B from the other \rightarrow inclusive rare $\mathrm{b} \rightarrow \mathrm{u}$

Studies of B mesons at LEP and SLC

$B^{0} \rightarrow$ anti- B^{0} mixing, time evolution

Fraction of events with like sign lepton pairs

Almost measured mixing in the B_{s} system (bad luck...)
Large number of B mesons (but by far not enough to do the CP violation measurements...)

CP violation in the B System

Large B mixing \rightarrow expect sizeable CP violation (CPV) in the B system

CPV through interference between mixing and decay amplitudes

Directly related to CKM parameters in case of a single amplitude

Golden Channel: B $\rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$

Soon recognized as the best way to study CP violation in the B meson system (I. Bigi and T. Sanda 1987)

Theoretically clean way to one of the parameters $\left(\sin 2 \phi_{1}\right)$

Use boosted BBbar system to measure the time evolution (P. Oddone)

Clear experimental signatures $\left(\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}, \mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{K}_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-}\right)$

Relatively large branching fractions for b->ccs ($\sim 10^{-3}$)
\rightarrow A lot of physicists were after this holy grail

Time evolution in the B system

An arbitrary linear combination of the neutral B-meson flavor eigenstates

$$
a\left|B^{0}\right\rangle+b\left|\bar{B}^{0}\right\rangle
$$

is governed by a time-dependent Schroedinger equation

$$
i \frac{d}{d t}\binom{a}{b}=H\binom{a}{b}=\left(M-\frac{i}{2} \Gamma\right)\binom{a}{b}
$$

M and Γ are 2×2 Hermitian matrices. CPT invariance $\rightarrow \mathrm{H}_{11}=\mathrm{H}_{22}$

$$
M=\left(\begin{array}{cc}
M & M_{12} \\
M_{12}^{*} & M
\end{array}\right), \Gamma=\left(\begin{array}{cc}
\Gamma & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma
\end{array}\right)
$$

diagonalize \rightarrow

Peter Križan, Ljubljana

Time evolution in the B system

\rightarrow mass eigenstates B_{L} (light) and B_{H} (heavy) with eigenvalues $m_{H}, \Gamma_{H}, m_{L}, \Gamma_{L}$ are given by

$$
\begin{aligned}
& \left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle \\
& \left|B_{H}\right\rangle=p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

With the eigenvalue differences

$$
\Delta m_{B}=m_{H}-m_{L}, \Delta \Gamma_{B}=\Gamma_{H}-\Gamma_{L}
$$

They are determined by the M and Γ matrix elements

$$
\begin{aligned}
& \left(\Delta m_{B}\right)^{2}-\frac{1}{4}\left(\Delta \Gamma_{B}\right)^{2}=4\left(\left|M_{12}\right|^{2}-\frac{1}{4}\left|\Gamma_{12}\right|^{2}\right) \\
& \Delta m_{B} \Delta \Gamma_{B}=4 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right)
\end{aligned}
$$

The ratio p / q is

$$
\frac{q}{p}=-\frac{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}{2\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)}=-\frac{2\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)}{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}
$$

What do we know about $\Delta \mathrm{m}_{\mathrm{B}}$ and $\Delta \Gamma_{\mathrm{B}}$?
$\Delta \mathrm{m}_{\mathrm{B}}=(0.502+-0.007) \mathrm{ps}^{-1}$ well measured

$$
\rightarrow \Delta \mathrm{m}_{\mathrm{B}} / \Gamma_{\mathrm{B}}=\mathrm{x}_{\mathrm{d}}=0.771+-0.012
$$

$\Delta \Gamma_{\mathrm{B}} / \Gamma_{\mathrm{B}}$ not measured, expected $\mathrm{O}(0.01)$, due to decays common to B and anti-B-O(0.001).
$\rightarrow \Delta \Gamma_{\mathrm{B}} \ll \Delta \mathrm{m}_{\mathrm{B}}$

Since $\Delta \Gamma_{B} \ll \Delta m_{B}$

$$
\begin{aligned}
& \Delta m_{B}=2\left|M_{12}\right| \\
& \Delta \Gamma_{B}=2 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right) /\left|M_{12}\right|
\end{aligned}
$$

and

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}} \quad=\text { a phase factor }
$$

or to the next order

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}\left[1-\frac{1}{2} \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)\right]
$$

B^{0} and \bar{B}^{0} can be written as an admixture of the states B_{H} and B_{L}

$$
\begin{aligned}
& \left|B^{0}\right\rangle=\frac{1}{2 p}\left(\left|B_{L}\right\rangle+\left|B_{H}\right\rangle\right) \\
& \left|\bar{B}^{0}\right\rangle=\frac{1}{2 q}\left(\left|B_{L}\right\rangle-\left|B_{H}\right\rangle\right)
\end{aligned}
$$

Time evolution

Any B state can then be written as an admixture of the states B_{H} and $B_{L \prime}$ and the amplitudes of this admixture evolve in time

$$
\begin{aligned}
& a_{H}(t)=a_{H}(0) e^{-i M_{H} t} e^{-\Gamma_{H} t / 2} \\
& a_{L}(t)=a_{L}(0) e^{-i M_{L} t} e^{-\Gamma_{L} t / 2}
\end{aligned}
$$

$A B^{0}$ state created at $t=0$ (denoted by $\mathrm{B}_{\text {phys }}$) has

$$
a_{\mathrm{H}}(0)=a_{\mathrm{L}}(0)=1 /(2 p) ;
$$

an anti- B at $\mathrm{t}=0$ (anti- $\mathrm{B}_{\text {phys }}$) has

$$
a_{H}(0)=-a_{L}(0)=1 /(2 q)
$$

At a later time t, the two coefficients are not equal any more because of the difference in phase factors $\exp \left(-\mathrm{iM}_{\mathrm{i}} \mathrm{t}\right)$
\rightarrow initial B^{0} becomes a linear combination of B and anti- B

Time evolution of B's

Time evolution can also be written in the B^{0} in $\overline{\mathrm{B}^{0}}$ basis:

$$
\begin{aligned}
\left|B_{\text {phys }}^{0}(t)\right\rangle & =g_{+}(t)\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left|\bar{B}^{0}\right\rangle \\
\left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle & =(p / q) g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

with

$$
\begin{gathered}
g_{+}(t)=e^{-i M t} e^{-\Gamma t / 2} \cos (\Delta m t / 2) \\
g_{-}(t)=e^{-i M t} e^{-\Gamma t / 2} i \sin (\Delta m t / 2) \\
M=\left(M_{H}+M_{\llcorner }\right) / 2
\end{gathered}
$$

If B mesons were stable ($\Gamma=0$), the time evolution would be:

$$
\begin{aligned}
& g_{+}(t)=e^{-i M t} \cos (\Delta m t / 2) \\
& g_{-}(t)=e^{-i M t} i \sin (\Delta m t / 2)
\end{aligned}
$$

\rightarrow Probability that a B turns into its anti-particle
\rightarrow beat

$$
\left|\left\langle\bar{B}^{0} \mid B_{p h y s}^{0}(t)\right\rangle\right|^{2}=|q / p|^{2}\left|g_{-}(t)\right|^{2}=|q / p|^{2} \sin ^{2}(\Delta m t / 2)
$$

\rightarrow Probability that a B remains a B

$$
\left|\left\langle B^{0} \mid B_{\text {phys }}^{0}(t)\right\rangle\right|^{2}=\left|g_{+}(t)\right|^{2}=\cos ^{2}(\Delta m t / 2)
$$

Expressions familiar from quantum mechanics of a two level system

B mesons of course do decay \rightarrow

B^{0} at $t=0$

Evolution in time
-Full line: B0
-dotted: B0

T: in units of $\tau=1 / \Gamma$

Decay probability

Decay probability $\left.\quad P\left(B^{0} \rightarrow f, t\right) \propto|\langle f| H| B_{p h y s}^{0}(t)\right\rangle\left.\right|^{2}$
Decay amplitudes of B and antiB to the same final state \boldsymbol{f}

$$
\begin{aligned}
& A_{f}=\langle f| H\left|B^{0}\right\rangle \\
& \bar{A}_{f}=\langle f| H\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Decay amplitude as a function of time:

$$
\begin{aligned}
& \langle f| H\left|B_{p h y s}^{0}(t)\right\rangle=g_{+}(t)\langle f| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\langle f| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f}+(q / p) g_{-}(t) \bar{A}_{f}
\end{aligned}
$$

... and similarly for the anti-B

CP violation: three types

Decay amplitudes of B and anti- B to the same final state \boldsymbol{f}

$$
\begin{aligned}
& A_{f}=\langle f| H\left|B^{0}\right\rangle \\
& \bar{A}_{f}=\langle f| H\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Define a parameter λ

$$
\lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}
$$

Three types of CP violation (CPV):

$$
\left.\begin{array}{l}
\text { ep in decay: }|\bar{A} / A| \neq 1 \\
\text { Sp in mixing: }|q / p| \neq 1
\end{array}\right\}|\lambda| \neq 1
$$

\&P in interference between mixing and decay: even if $|\lambda|=1$ if only $\operatorname{Im}(\lambda) \neq 0$

CP violation in the interference between decays with and without mixing

CP violation in the interference between mixing and decay to a state accessible in both B^{0} and anti- B^{0} decays

For example: a CP eigenstate f_{CP} like $\pi^{+} \pi^{-}$

$$
\lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}
$$

We can get $C P$ violation if $\operatorname{Im}(\lambda) \neq 0$, even if $|\lambda|=1$

CP violation in the interference between decays with and without mixing

Decay rate asymmetry:

$$
a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}
$$

Decay rate: $\left.\quad P\left(B^{0} \rightarrow f_{C P}, t\right) \propto\left|\left\langle f_{C P}\right| H\right| B_{\text {phys }}^{0}(t)\right\rangle\left.\right|^{2}$
Decay amplitudes vs time:

$$
\begin{aligned}
& \left\langle f_{C P}\right| H\left|B_{p h y s}^{0}(t)\right\rangle=g_{+}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}} \\
& \left\langle f_{C P}\right| H\left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle=(p / q) g_{-}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+g_{+}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}= \\
& =\frac{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}-\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}+\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}= \\
& =\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}} \quad \lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}} \\
& =C \cos (\Delta m t)+S \sin (\Delta m t) \quad
\end{aligned}
$$

Non-zero effect if $\operatorname{Im}(\lambda) \neq 0$, even if $|\lambda|=1$

$$
\text { If }|\lambda|=1 \rightarrow a_{f_{C P}}=-\operatorname{Im}(\lambda) \sin (\Delta m t)
$$

CP violation in the interference between decays with and without mixing

One more form for λ :

$$
\lambda_{f_{C P}}=\frac{q}{p} \frac{\bar{A}_{f_{C P}}}{A_{f_{C P}}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

$\eta_{\mathrm{fcp}}=+-1 \mathrm{CP}$ parity of f_{CP}
\rightarrow we get one more (-1) sign when comparing asymmetries in two states with opposite CP parity

$$
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)
$$

B and anti-B from the $Y(4 s)$

B and anti- B from the $\mathrm{Y}(4 \mathrm{~s})$ decay are in a $\mathrm{L}=1$ state.
They cannot mix independently (either BB or anti-B anti-B states are forbidden with $\mathrm{L}=1$ due to Bose symmetry).
After one of them decays, the other evolves independently \rightarrow
\rightarrow only time differences between one and the other decay matter (for mixing).

Assume

-one decays to a CP eigenstate $\mathrm{f}_{\mathrm{CP}}\left(\mathrm{e} . \mathrm{g} . \pi \pi\right.$ or $\left.\mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}\right)$ at time $\mathrm{t}_{\mathrm{fPP}}$ and
-the other at $t_{\text {ftag }}$ to a flavor-specific state $f_{\text {tag }}$ (=state only accessible to a B^{0} and not to a anti- B^{0} (or vice versa), e.g. $\mathrm{B}^{0}->\mathrm{D}^{0} \pi, \mathrm{D}^{0}->\mathrm{K}-\pi^{+}$) also known as 'tag' because it tags the flavour of the B meson it comes from

Decay rate to f_{CP}

Incoherent production (e.g. hadron collider)

coherent production at $Y(4 s)$

At $\mathrm{Y}(4 \mathrm{~s})$: Time integrated asymmetry $=0$

CP violation in SM

CP violation: consequence of the
Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

CP violation is possible in this scheme if $\mathrm{V}_{\text {CKM }}$ is not a real matrix (i.e. has a non-trivial complex phase)

CP violation in SM

$$
\begin{array}{r}
\mathcal{L}=V_{i j} \bar{U}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) D_{j} W_{\mu}+V_{i j}^{*} \bar{D}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) U_{j} W_{\mu} \\
\mathbb{I} C P \\
\mathcal{L}_{C P}=V_{i j} \bar{D}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) U_{j} W_{\mu}+V_{i j]}^{*} \bar{U}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) D_{j} W_{\mu} \\
\text { If } \mathrm{v}_{\mathrm{ij}}=\mathrm{v}_{\mathrm{ij}}{ }^{*} \downarrow \mathcal{L}=\mathcal{L}_{\mathrm{CP}} \downarrow \mathrm{CP} \text { is conserved }
\end{array}
$$

CKM matrix

Transitions between members of the same family more probable (=thicker lines) than others
\rightarrow CKM: almost a diagonal matrix, but not completely

\rightarrow CKM: almost real, but not completely!

Vtb

CKM matrix

Almost a real diagonal matrix, but not completely \rightarrow
Wolfenstein parametrisation: expand in the parameter $\lambda\left(=\sin \theta_{c}=0.22\right)$
A, ρ and η : all of order one

$$
V=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
$$

Unitary relations

Rows and columns of the V matrix are orthogonal Three examples: $1^{\text {st }}+2^{\text {nd }}, 2^{\text {nd }}+3^{\text {rd }}, 1^{\text {st }}+3^{\text {rd }}$ columns

$$
\begin{aligned}
& V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}=0, \\
& V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0, \\
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 .
\end{aligned}
$$

Geometrical representation: triangles in the complex plane.

Unitary triangles

(a)

$$
\begin{align*}
& V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}=0, \\
& V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0, \\
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 . \tag{b}
\end{align*}
$$

(c)

All triangles have the same area $\mathrm{J} / 2$ (about 4×10^{-5})

$$
J=C_{12} C_{23} C_{13}^{2} S_{12} S_{23} S_{13} \sin \delta
$$

Unitarity triangle

THE unitarity triangle:

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

(a)

$$
\begin{aligned}
& \alpha \equiv \phi_{2} \equiv \arg \left(\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right) \\
& \beta \equiv \phi_{1} \equiv \arg \left(\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right) \\
& \gamma \equiv \phi_{3} \equiv \arg \left(\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right) \equiv \pi-\alpha-\beta
\end{aligned}
$$

b decays

Decay asymmetry predictions - example $\pi^{+} \pi^{-}$

N.B.: for simplicity we have neglected possible penguin amplitudes (which is wrong as we shall see later, when we will do it properly).

Peter Križan, Ljubljana

A reminder: $\quad \frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}$

$$
\Delta m_{B}=2\left|M_{12}\right|
$$

$\Delta m \propto$

$$
\begin{aligned}
\left|V_{t b}^{*} V_{t d}\right|^{2} m_{t}^{2} & \propto \lambda^{6} m_{t}^{2} \\
\left|V_{c b}^{*} V_{c d}\right|^{2} m_{c}^{2} & \propto \lambda^{6} m_{c}^{2}
\end{aligned}
$$

Decay asymmetry predictions - example $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$

$\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c} s:}$ Take into account that we measure the $\pi^{+} \pi^{-}$ component of K_{s} - also need the $(\mathrm{q} / \mathrm{p})_{\mathrm{K}}$ for the K system

$$
\begin{aligned}
& \lambda_{\psi K s}=\eta_{\psi K K} \cdot\left(\frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}^{*}}\right)\left(\frac{V_{c s}^{*} V_{c b}}{V_{c s} V_{c b}^{*}}\right)\left(\frac{V_{c d}^{*} V_{c s}}{V_{c d} V_{c s}^{*}}\right) \\
& =\eta_{\psi K s}\left(\frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}{ }^{*}}\right)\left(\frac{V_{c b}}{V_{c b}{ }^{*}} \frac{V_{c d}^{*}}{V_{c d}}\right)
\end{aligned}
$$

$$
\operatorname{Im}\left(\lambda_{\psi K s}\right)=\sin 2 \phi_{1}
$$

$$
\beta \equiv \phi_{1} \equiv \arg \left(\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}{ }^{*}}\right)
$$

$b \rightarrow c$ anti-c s $C P=+1$ and $C P=-1$ eigenstates

$a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)$

Asymmetry sign depends on the CP parity of the final state $f_{\text {CPr }} \eta_{\text {fcp }}=+-1$

$$
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

$\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right): \mathrm{CP}=-1$
$\bullet \mathrm{J} / \psi: \mathrm{P}=-1, \mathrm{C}=-1$ (vector particle $\mathrm{J}^{\mathrm{PC}}=1^{-}$): $\mathrm{CP}=+1$
$\bullet \mathrm{K}_{\mathrm{S}}\left(->\pi^{+} \pi^{-}\right)$: $\mathrm{CP}=+1$, orbital ang. momentum of pions=0 ->

$$
\mathrm{P}\left(\pi^{+} \pi^{-}\right)=\left(\pi^{-} \pi^{+}\right), \mathrm{C}\left(\pi^{-} \pi^{+}\right)=\left(\pi^{+} \pi^{-}\right)
$$

-orbital ang. momentum between J / ψ and $\mathrm{K}_{\mathrm{S}} \mathrm{L}=1, \mathrm{P}=(-1)^{1}=-1$
$\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}(3 \pi): \mathrm{CP}=+1$
Opposite CP parity to $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right)$, because $\mathrm{K}_{\mathrm{L}}(3 \pi)$ has $\mathrm{CP}=-1$

How to measure CP violation?

- Principle of measurement
- Experimental considerations
- Babar and Belle spectrometers

Principle of measurement

Principle of measurement:
-Produce pairs of B mesons, moving in the lab system
-Find events with B meson decay of a certain type (usually $B \rightarrow f_{C P}$ CP eigenstate)
-Measure time difference between this decay and the decay of the associated $B\left(f_{\text {tag }}\right)$ (from the flight path difference)
-Determine the flavour of the associated B (B or anti- B)

- Measure the asymmetry in time evolution for B and anti- B

Restrict for the time being to B meson production at $\mathrm{Y}(4 \mathrm{~s})$

B meson production at $\mathrm{Y}(4 \mathrm{~s})$

Peter Križan, Ljubljana

Principle of measurement

Experimental considerations

What kind of vertex resolution do we need to measure the asymmetry?

$$
P\left(B^{0}\left(\bar{B}^{0}\right) \rightarrow f_{C P}, t\right)=e^{-\Gamma t}\left(1 \mp \sin \left(2 \phi_{1}\right) \sin (\Delta m t)\right)
$$

Want to distinguish the decay rate of B (dotted) from the decay rate of anti-B (full).
-> the two curves should not be smeared too much

Integrals are equal, time information mandatory! (true at $\mathrm{Y}(4 \mathrm{~s})$, but not for incoherent production)

Peter Križan, Ljubljana

Experimental considerations

B decay rate vs t for different vertex resolutions $\sigma(z)$ in units of typical B flight length $\beta \gamma \tau \mathrm{C}$

Peter Križan, Ljubljana

Experimental considerations

Error on $\sin 2 \phi_{1}=\sin 2 \beta$ as function of vertex resolution in units of typical B flight length $\sigma(z) / \beta \gamma \tau \mathrm{C}$
for 1000 events

Experimental considerations

Choice of boost $\beta \gamma$:
Vertex resolution vs. path length
Typical B flight length: $z_{B}=\beta \gamma \tau C$
Typical two-body topology: decay products at 90° in cms ; at $\theta(\beta \gamma)=a \tan (1 / \beta \gamma)$ in the lab
Assume: vertex resolution determined entirely by multiple scattering in the first detector layer and beam pipe wall at r_{0}

$$
\begin{aligned}
& \sigma_{\theta}=15 \mathrm{MeV} / \mathrm{p} \boxtimes\left(\mathrm{~d} / \sin \theta X_{0}\right) \\
& \sigma(\mathrm{z})=r_{0} \sigma_{\theta} / \sin ^{2} \theta \\
& \Rightarrow \sigma(z) \alpha r_{0} / \sin ^{5 / 2} \theta
\end{aligned}
$$

Experimental considerations

Choice of boost $\beta \gamma$:
Optimize ratio of typical B
flight length to the vertex resolution
$\beta \gamma \tau c / \sigma(z) \alpha \beta \gamma \sin ^{5 / 2} \theta(\beta \gamma)$

Boost around $\beta \gamma=0.8$ seems optimal

However....
$\beta \gamma \tau c / \sigma(z)$

Experimental considerations

Which boost...
Arguments for a smaller boost:

- Larger boost -> smaller acceptance ->
- Larger boost -> it becomes hard to damp the betatron oscillations of the low energy beam: less synchrotron radiation at fixed ring radius (same as the high energy beam)

Figure 4. The acceptance of a detector covering $\left|\cos \theta_{l a b}\right|<0.95$ for five uncorrelated particles as a function of the energy of the more energetic beam in an asymmetric collider at the $\Upsilon(4 S)$.

Experimental considerations

Detector form: symmetric for symmetric energy beams; slightly extended in the boost direction for an asymmetric collider.

How many events?

Rough estimate:
Need ~ 1000 reconstructed B-> J/ $\psi \mathrm{K}_{\mathrm{S}}$ decays with J/ ψ-> ee or $\mu \mu$, and $\mathrm{K}_{\mathrm{S}}->\pi^{+} \pi^{-}$
$1 / 2$ of $Y(4 s)$ decays are B^{0} anti- B^{0} (but 2 per decay)
$\operatorname{BR}\left(B->J / \psi K^{0}\right)=8.410^{-4}$
$\operatorname{BR}(J / \psi->$ ee or $\mu \mu)=11.8 \%$
$1 / 2$ of K^{0} are $K_{S}, \operatorname{BR}\left(K_{S}->\pi^{+} \pi^{-}\right)=69 \%$
Reconstruction effiency ~ 0.2 (signal side: 4 tracks, vertex, tag side pid and vertex)

$$
\begin{aligned}
N(Y(4 \mathrm{~s})) & =1000 /(1 / 2 * 2 * 8.410-4 * 0.118 * 1 / 2 * 0.69 * 0.2)= \\
& =140 \mathrm{M}
\end{aligned}
$$

How to produce 140 M BB pairs?

Want to produce 140 M pairs in two years
Assume effective time available for running is $10^{7} \mathrm{~s}$ per year.
\rightarrow need a rate of $14010^{6} /\left(210^{7} \mathrm{~s}\right)=7 \mathrm{~Hz}$

Observed rate of events $=$ Cross section \times Luminosity
$\frac{d N}{d t}=L \sigma$
Cross section for $\mathrm{Y}(4 \mathrm{~s})$ production: $1.1 \mathrm{nb}=1.110^{-33} \mathrm{~cm}^{2}$
\rightarrow Accelerator figure of merit - luminosity - has to be

$$
L=6.5 / \mathrm{nb} / \mathrm{s}=6.510^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

This is much more than any other accelerator achieved before!

Colliders: asymmetric B factories

Be11e $\mathrm{p}\left(\mathrm{e}^{-}\right)=8 \mathrm{GeV} \mathrm{p}\left(\mathrm{e}^{+}\right)=3.5 \mathrm{GeV}$
$\beta \gamma=0.42$
Peter Križan, Ljubljana

Accelerator performance

Peter Križan, Ljubljana

Normal injection

Continuous injection

$\rightarrow 1182 / \mathrm{pb} /$ day
Peter Križan, Ljubljana

Interaction region: BaBar

Head-on collisions

Ijana

Interaction region: Belle

Collisions at a finite angle +-11mrad

Belle spectrometer at KEK-B

BaBar spectrometer at PEP-II

Peter Križan, Ljubljana

Silicon vertex detector (SVD)

Peter Križan, Ljubljana

Flavour tagging

Was it a B or an anti-B that decayed to the CP eigenstate?

Look at the decay products of the associated B

- Charge of high momentum lepton

Peter Križan, Ljubljana

Flavour tagging

Was it a B or anti-B that decayed to the CP eigenstate?

Look at the decay products of the associated B

- Charge of high momentum lepton
- Charge of kaon
- Charge of 'slow pion' (from $D^{*+} \rightarrow D^{0} \pi^{+}$and $D^{*-} \rightarrow D^{0} \pi^{-}$ decays)

Charge measured from curvature in magnetic field, \rightarrow need reliable particle identification

Tracking: BaBar drift chamber

40 layers of wires (7104 cells) in 1.5 Tesla magnetic field Helium:Isobutane 80:20 gas, Al field wires, Beryllium inner wall, and all readout electronics mounted on rear endplate
Particle identification from ionization loss (7\% resolution)

Identification

Hadrons ($\pi, \mathrm{K}, \mathrm{p}$):

- Time-of-flight (TOF)
- dE/dx in a large drift chamber
- Cherenkov counters
K_{L} : instrumented magnet yoke

Electrons: electromagnetic calorimeter

Muon: instrumented magnet yoke

PID coverage of kaon/pion spectra

Peter Križan, Ljubljana

PID coverage of kaon/pion spectra

Peter Križan, Ljubljana

Cherenkov counters

Essential part of particle identification systems.
Cherenkov relation: $\boldsymbol{\operatorname { c o s }} \theta=\mathbf{c} / \mathbf{n v}=\mathbf{1} / \boldsymbol{\beta} \mathbf{n}$

Threshold counters \rightarrow count photons to separate particles below and above threshold; for $\beta<\beta_{\mathrm{t}}=1 / \mathrm{n}$ (below threshold) no Čerenkov light is emitted

Ring Imaging (RICH) counter \rightarrow measure Čerenkov angle and count photons

Belle ACC (aerogel Cherenkov counter): threshold Čerenkov counter

K (below thr.) vs. π (above thr.): adjust n

Detector unit: a block of aerogel and two fine-mesh PMTs

measured for $2 \mathrm{GeV}<\mathrm{p}<3.5 \mathrm{GeV}$ expected, measured ph. yield

Belle ACC (aerogel Cherenkov counter): threshold Cherenkov counter

K (below thr.) vs. π (above thr.): adjust n for a given angle kinematic region (more energetic particles fly in the 'forward region')

Peter Križan, Ljubljana

DIRC: Detector of Internally Reflected Cherekov photons

Use Cherenkov relation $\cos \theta=c / n v=1 / \beta n$ to determine velocity from angle of emission

DIRC: a special kind of RICH (Ring Imaging Cherenkov counter) where Čerenkov photons trapped in a solid radiator (e.q. quartz) are propagated along the radiator bar to the side, and detected as they exit and traverse a gap.

$4 \times 1.225 \mathrm{~m}$ Bars
glued end-to-end

DIRC event

Babar DIRC: a Bhabha event $\mathrm{e}^{+} \mathrm{e}^{-}-->\mathrm{e}^{+} \mathrm{e}^{-}$

Peter Križan, Ljubljana

DIRC performance

To check the performance, use kinematically selected decays:
$\mathrm{D}^{*+} \rightarrow \pi^{+} \mathrm{D}^{0}, \mathrm{D}^{0}->\mathrm{K}^{-} \pi^{+}$

Muon and K_{L} detector

Separate muons from hadrons (pions and kaons): exploit the fact that muons interact only e.m., while hadrons interact strongly \rightarrow need a few interaction lengths (about 10x radiation length in iron, 20x in CsI) Detect K_{L} interaction (cluster): again need a few interaction lengths.

Up to 21 layers of resistiveplate chambers (RPCs) between iron plates of flux return

Bakelite RPCs at BABAR
(problems with aging)
Glass RPCs at Belle

retei nisais, Ljuvljana

Muon and K_{L} detector

Example:
event with
-two muons and a - K_{L}
and a pion that partly penetrated into the muon chamber system

Muon and K_{L} detector performance

Muon identification >800 MeV/c
efficiency

Fig. 109. Muon detection efficiency vs. momentum in KLM.
fake probability

Fig. 110. Fake rate vs. momentum in KLM.

Muon and K_{L} detector performance

K_{L} detection: resolution in direction \rightarrow
K_{L} detection: also with possible with electromagnetic calorimeter (0.8 interactin lengths)

Fig. 107. Difference between the neutral cluster and the direction of missing momentum in KLM.

How to measure $\sin 2 \phi_{1}$?

To measure $\sin 2 \phi_{1}$, we have to measure the time dependent CP asymmetry in
 $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}_{\mathrm{s}}$ decays
$a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)=\sin 2 \phi_{1} \sin (\Delta m t)$

$$
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

In addition to $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}_{\mathrm{s}}$ decays we can also use decays with any other charmonium state instead of J / Ψ. Instead of K_{s} we can use channels with K_{L} (opposite CP parity).

Reconstructing chamonium states

Reconstructing a final state X which decayed to several particles (x, y, z):
From the measured tracks calculate the invariant mass of the system ($\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z}$):

$$
M=\sqrt{\left(\sum E_{i}\right)^{2}-\left(\sum \vec{p}_{i}\right)^{2}}
$$

The candidates for the X ->xyz decay show up as a peak in the distribution on (mostly combinatorial) background.
The name of the game: have as little background under the peak as possible without loosing the events in the peak (=reduce background and have a small peak width).

A golden channel event

Reconstructing chamonium states

$$
\begin{gathered}
J / \psi \rightarrow \mu^{+} \mu^{-}, e^{+} e^{-} \\
\sigma_{M}=9.6(10.7) \mathrm{GeV} / \mathrm{c}^{2}
\end{gathered}
$$

$$
\begin{gathered}
\psi(2 s) \rightarrow \mu^{+} \mu^{-}, e^{+} e^{-} \\
\sigma_{M}=12.1 \mathrm{GeV} / \mathrm{c}^{2}
\end{gathered}
$$

$$
\chi_{c 1}, \chi_{c 2} \rightarrow J / \psi \gamma
$$

$$
\sigma_{\Delta M}=7.0 \mathrm{GeV} / \mathrm{c}^{2}
$$

Reconstructing $\mathrm{K}_{\mathrm{S}}{ }^{0}$

$$
\begin{gathered}
K_{S} \rightarrow \pi^{+} \pi^{-} \\
\sigma_{M}=4.1 \mathrm{GeV} / \mathrm{c}^{2}
\end{gathered}
$$

Reconstruction of rare B meson decays

Reconstructing rare B meson decays at $\mathrm{Y}(4 \mathrm{~s})$: use two variables, beam constrained mass $\mathbf{M b c}$ and
energy diference DE

$$
\Delta \boldsymbol{E} \equiv \sum \boldsymbol{E}_{\boldsymbol{i}}-\boldsymbol{E}_{C M} / 2
$$

$$
M_{b c}=\sqrt{\left(E_{C M} / 2\right)^{2}-\left(\sum \vec{p}_{i}\right)^{2}}
$$

Peter Križan, Ljubljana

Continuum suppression

Peter Križan, Ljubljana

Reconstruction of b-> c anti-c s $C P=-1$ eigenstates

$J / \Psi\left(\Psi, \chi_{\mathrm{c} 1}, \eta_{\mathrm{c}}\right) \mathrm{K}_{\mathrm{s}}\left(\mathrm{K}^{* 0}\right)$ sample $\left(\eta_{\mathrm{f}}=-1\right)$ from 88(85) x10 $B \bar{B}$

BaBar 2002 result

Peter Križan, Ljubljana

Principle of CPV Measurement

Final result

CP is violated! Red points differ from blue.

Red points: anti- $\mathrm{B}^{0}->\mathrm{f}_{\mathrm{CP}}$ with $C P=-1$ (or $\mathrm{B}^{0}->\mathrm{f}_{\mathrm{CP}}$ with $\mathrm{CP}=+1$)
Blue points: $B^{0}->f_{C P}$ with $C P=-1$ (or anti- $\mathrm{B}^{0}->\mathrm{f}_{\mathrm{CP}}$ with $\mathrm{CP}=+1$)

Belle, 2002 statistics (78/fb, 85M B B pairs)

Fitting the asymmetry

Fitting function:

$$
P_{\text {sig }}(\Delta t)=\frac{e^{-|\Delta t| / \tau}}{4 \tau}\left\{1+q\left(1-2 w_{l}\right) \operatorname{Im} \lambda \sin \Delta m t\right\} \otimes \underset{\text { iss-tagging probability } \quad R(t)}{ } \begin{aligned}
& \text { Resolution function: } \\
& \text { from self-tagged events } \\
& \mathrm{B} \rightarrow \mathrm{D}^{*} \mid \mathrm{lv}, \mathrm{D} \pi, \ldots
\end{aligned}
$$

$\mathrm{q}=+1$ or $=-1$ (B or anti-B on the tag side)

Fitting: unbinned maximum likelihood fit event-by-event
Fitted parameter: Im(λ)

b \rightarrow c anti-c s $C P=+1$ and $C P=-1$ eigenstates

$$
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)
$$

Asymmetry sign depends on the CP parity of the final state $f_{\text {CP }}, \eta_{\text {fcp }}=+-1$

$$
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

$$
\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right): \mathrm{CP}=-1
$$

$\bullet \mathrm{J} / \psi: \mathrm{P}=-1, \mathrm{C}=-1$ (vector particle $\mathrm{J}^{\mathrm{PC}}=1^{--}$): $\mathrm{CP}=+1$
$\bullet K_{S}\left(->\pi^{+} \pi^{-}\right): C P=+1$, orbital ang. momentum of pions=0 ->

$$
\mathrm{P}\left(\pi^{+} \pi^{-}\right)=\left(\pi^{-} \pi^{+}\right), \mathrm{C}\left(\pi^{-} \pi^{+}\right)=\left(\pi^{+} \pi^{-}\right)
$$

\bullet-rbital ang. momentum between J / ψ and $\mathrm{K}_{\mathrm{S}} \mathrm{I}=1, \mathrm{P}=(-1)^{1}=-1$
$\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}(3 \pi): \mathrm{CP}=+1$
Opposite parity to $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right)$, because $\mathrm{K}_{\mathrm{L}}(3 \pi)$ has $\mathrm{CP}=-1$

Reconstruction of $b \rightarrow c$ anti-c s $C P=+1$ eigenstates

- detection of K_{L} in KLM and ECL
- K_{L} direction, no energy

* $p^{*} \approx 0.35 \mathrm{GeV} / \mathrm{c}$ for signal events
\uparrow background shape is determined from MC, and its size from the fit to the data

Final measurement of $\sin 2 \phi_{1}(=\sin 2 \beta)$

ϕ_{1} from CP violation measurements in $B^{0} \rightarrow c \bar{c} K^{0}$

Final measurement: with improved tracking, more data, improved systematics (and more statistics $c c=J / \psi, \psi(2 S), \chi_{c 1} \rightarrow 25 \mathrm{k}$ events

Detector effects: wrong tagging, finite Δt resolution \rightarrow determined using control data samples

Opposite CP \rightarrow sine wave with a flipped sign

Belle, final, $710 \mathrm{fb}^{-1}$, PRL 108, 171802 (2012)
Peter Križan, Ljubljana

Final measurements of $\sin 2 \phi_{1}(=\sin 2 \beta)$

ϕ_{1} from $B^{0} \rightarrow c \bar{C} K^{0}$
Final results for $\sin 2 \phi_{1}$

BaBar: $0.687 \pm 0.028 \pm 0.012$
with a single experiment precision of $\sim 4 \%$!

Comparison with LHCb:

- The power of tagging at B factories: 33% vs $\sim 2-3 \%$ at LHCb
\bullet LHCb: with 8 k tagged $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$ events from 1/fb measured $\sin 2 \beta=0.73 \pm 0.07$ (stat.) ± 0.04 (syst.)
-Uncertainties at B factories - e.g., Belle final result $\sin 2 \beta=0.668 \pm 0.023$ (stat.) ± 0.012 (syst.) - are $3 x$ smaller than at LHCb

How to measure $\phi_{2}(\alpha)$?

To measure $\sin 2 \phi_{2}$, we measure the time dependent CP asymmetry in $\mathrm{B}^{0} \rightarrow \pi \pi$ decays

$$
\begin{aligned}
& a_{f C P}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}=\quad \lambda_{f C P}=\eta_{f(P} \frac{q}{p} \frac{\bar{A}_{f_{C P}}}{A_{f(c P}} \\
& =\frac{\left(1-\left|\lambda_{f c P}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{c P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f C P}\right|^{2}}
\end{aligned}
$$

In this case $|\lambda| \neq 1 \rightarrow$ much harder to extract ϕ_{2} from the CP violation measurement

Decay asymmetry calculation for $\mathrm{B} \rightarrow \pi^{+} \pi^{-}$
 - tree diagram only

Neglected possible penguin amplitudes ->

$\pi^{+} \pi^{-}$- tree vs penguin

A sizable penguin contribution!
\rightarrow Disentangle ambiguities due to penguin polution by using related $\pi \pi, \rho \rho, \rho \pi$ decays

Final measurement of
 $\phi_{2}(\alpha)$ in $B \rightarrow \pi^{+} \pi^{-}$decays

ϕ_{2} from CP violation measurements in $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$

Belle:

$$
\begin{aligned}
& S=-0.64 \pm 0.08 \pm 0.03 \\
& C=-0.33 \pm 0.06 \pm 0.03
\end{aligned}
$$

PRD 88, 092003 (2013)

BaBar:
$S=-0.68 \pm 0.10 \pm 0.03$
$C=-0.25 \pm 0.08 \pm 0.02$

Extracting ϕ_{2} : isospin relations

$$
\mathrm{T} \sim \mathrm{~V}_{\mathrm{ub}} \mathrm{~V}_{\mathrm{ud}} \sim \lambda^{3}
$$

$$
\mathrm{P} \sim \mathrm{~V}_{\mathrm{tb}} * \mathrm{~V}_{\mathrm{td}} \sim \lambda^{3}
$$

$$
\mathrm{T}_{\mathrm{c}} \sim \mathrm{~V}_{\mathrm{ub}}{ }^{*} \mathrm{~V}_{\mathrm{ud}}
$$

No pengiun!

Constraint: relation of decay amplitudes in the SU(2) symmetry
$\bar{A}^{+0}=1 / \sqrt{ } 2 \bar{A}^{+-}+\bar{A}^{00}$
$A^{-0}=1 / \sqrt{ } 2 A^{+-}+A^{00}$

Measurement of $B \rightarrow \pi^{0} \pi^{0}$ decays

ϕ_{2} from CP violation measurements in $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$
Extraction not easy because of the penguin contribution
$B R$ for the $B \rightarrow \pi^{0} \pi^{0}$ decay important to resolve this issue.

Pit Vanhoefer, CKM2014

Hard channel to measure: four gammas, continuum (ee $\rightarrow \mathrm{qq}$) background

- Theory: $\mathrm{BR}<1 \times 10-6$ (Phys.Rev.D83:034023,2011)
- Belle, $1 / 3$ of data PRL 94, 181803(2005) $=(2.32+0.4-0.5+0.2-0.3) 10^{-6}$
- BaBar PR D87 $052009(1.83 \pm 0.21 \pm 0.13) 1^{-6}$

Belle new result with full data set: Improved rejection of out-of-time electromagnetic calorimeter hits (some of which contribute to a peaking background).

Measurement of $B \rightarrow \pi^{0} \pi^{0}$ decays

$N_{B B}=751.5 \times 10^{6}, \Delta E$

$N_{B B}=751.5 \times 1 \mathrm{u}$, 心

$$
\operatorname{Br}\left(\mathrm{B} \rightarrow \pi^{0} \pi^{0}\right)=(0.90 \pm 0.20 \text { (stat) } \pm 0.15(\text { syst })) \cdot 10^{-6}
$$

$$
\text { (6.7 } \sigma \text { significance) }
$$

A_{CP} under preparation \rightarrow stay tuned

Improved measurement of $\phi_{2}(\alpha)$ in $B \rightarrow \pi \pi, \rho \rho, \rho \pi$ decays

$\phi_{2}(\alpha)$ from CP violation and branching

fraction measurements in $B \rightarrow \pi \pi, \rho \rho, \rho \pi$

$$
\phi_{2}=\alpha=\left(85.4^{+4.0}-3.8\right) \text { degrees }
$$

http://ckmfitter.in2p3.fr/www/results /plots_fpcp13/ckm_res_fpcp13.html
p-value $(1-C L)=1$: central value p-value $(1-C L)=0.317$ limits the one-sigma region.

Still to be updated for the final version!

Peter Križan, Ljubljana

How to measure ϕ_{3} ?

No easy (=tree dominated) channel to measure ϕ_{3} through CP violation.

Any other idea? Yes.

$$
\gamma \equiv \phi_{3} \equiv \arg \left(\frac{V_{u d} V_{u b}{ }^{*}}{V_{c d} V_{c b}{ }^{*}}\right)
$$

Peter Križan, Ljubljana

ϕ_{3} from interference of a direct and colour suppressed decays

Basic idea: use $B^{-} \rightarrow K^{-} D^{0}$ and $B^{-} \rightarrow K^{-} \bar{D}^{0}$ with $D^{0}, \bar{D}^{0} \rightarrow f$ interference $\leftrightarrow \phi_{3}$
f : any final state, common to decays of both D^{0} and $\overline{\mathrm{D}}^{0}$

$\mathrm{T} \sim \mathrm{V}_{\mathrm{cb}} * \mathrm{~V}_{\mathrm{us}} \sim \mathrm{A} \lambda^{3}$
$\mathrm{T}_{\mathrm{c}} \sim \mathrm{V}_{\mathrm{ub}} * \mathrm{~V}_{\mathrm{cs}} \sim \mathrm{A} \lambda^{3}(\rho+\mathrm{i} \eta)$

$$
(\rho+i \eta) \sim e^{i \phi 3}
$$

ϕ_{3} from interference of a direct and colour suppressed decays

```
Gronau,London,Wyler (GLW) 1991: B- > K-D }\mp@subsup{}{\mathrm{ CP }}{
Atwood,Dunietz,Soni (ADS) 2001: B- }->\mp@subsup{K}{}{-}\mp@subsup{D}{}{0(*)}[\mp@subsup{K}{}{+}\mp@subsup{\pi}{}{-}
Be1le (Bondar et a1), 2002;
Giri, Zupan et a1. (GGSZ), 2003: B
                                    Dalitz plot
```

 Density of the Dalitz plot depends on \(\phi_{3}\)
 Matrix element:
 $$
M_{+}=f\left(m_{+}^{2}, m_{-}^{2}\right)+r e^{i \phi_{3}+i \delta} f\left(m_{-}^{2}, m_{+}^{2}\right)
$$

Sensitivity depends on

$$
r=\sqrt{\frac{\operatorname{Br}\left(B^{-} \rightarrow \bar{D}^{(*)^{0}} K^{-}\right)}{\operatorname{Br}\left(B^{-} \rightarrow D^{(*)^{0}} K^{-}\right)}} \approx 0.1-0.3
$$

or any other common 3-body decay

What is a Dalitz plot?

Example: three body decay $X \rightarrow a b c$. Assume $\mathrm{m}_{\mathrm{a}}=\mathrm{m}_{\mathrm{b}}=\mathrm{m}_{\mathrm{c}}=0.14 \mathrm{GeV}$
M_{ij} : invariant mass of the two-particle system (ij) in a three body decay.

Kinematic boundaries: drawn for two values of total energy E of the threepion system.

Resonance bands: shown for states ($a b$) and ($b c$) corresponding to a (fictitious) resonance with $\mathrm{M}=0.5 \mathrm{GeV}$ and $\Gamma=0.2$ GeV ; dot-dash lines show the locations a (ca) resonance band would have a mass of 0.5 GeV , for the two values of the total energy E.

The pattern becomes much more complicated, if the resonances interfere.

Richard H. Dalitz, "Dalitz plot", in AccessScience@McGraw-Hill, http://www.accessscience.com.

$\phi_{3}(=\gamma)$ with Dalitz analysis

GGSZ method:

The best way to measure ϕ_{3}
Meeting on Dalitz Analyses, 2002

$$
\stackrel{\left(-D^{0}\right.}{ } \rightarrow \mathrm{K}_{\mathrm{S}} \pi^{+} \pi^{-}
$$

A. Giri et al., PRD68, 054018 (2003)
A. Bondar et al (Belle), Proc. BINP

Model dependent description of f_{D} using continuum D* data \Rightarrow systematic uncertainty
$\phi_{3}=(78 \pm 12 \pm 4 \pm 9)^{\sigma}$

$$
\phi_{3}=(68 \pm 14 \pm 4 \pm 3)^{\circ}
$$

Belle, PRD81, 112002, (2010), $605 \mathrm{fb}^{-1}$
BaBar, PRL 105, 121801, (2010)

$\phi_{3}(=\gamma)$ from model-independent/binned Dalitz method

GGSZ method: How to avoid the model dependence?
\rightarrow Suitably subdivide the Dalitz space into bins

$$
\begin{aligned}
M_{i}^{ \pm} & =h\left\{K_{i}+r_{B}^{2} K_{-i}+2 \sqrt{K_{i} K_{-i}}\left(x_{ \pm} c_{i}+y_{ \pm i}\right)\right\} \\
x_{ \pm} & =r_{B} \cos \left(\delta_{B} \pm \phi_{3}\right) \quad y_{ \pm}=r_{B} \sin \left(\delta_{B} \pm \phi_{3}\right)
\end{aligned}
$$

M_{i} : \# B decays in bins of D Dalitz plane, $K_{i}: \# D^{0}\left(\overline{D^{0}}\right)$ decays in bins of D Dalitz plane (D^{*} $\rightarrow D \pi$), c_{i}, s_{i} : strong ph. difference between symm. Dalitz points \leftarrow Cleo, PRD82, 112006 (2010)

> Use only DK
> $N_{\text {sig }}=1176 \pm 43$

4-dim fit for signal yield $\left(\Delta \mathrm{E}, \mathrm{M}_{\mathrm{bc}}, \cos \theta_{\text {thrust }}, \mathcal{F}\right)$;

```
Belle, }710\textrm{fb}\mp@subsup{}{}{-1}\mathrm{ , Phys. Rev.
D85 (2012) }11201
```

New method pioneered by Belle, very important for large event samples at LHCb and super B factory

Peter Križan, Ljubljana

ϕ_{3} measurement

Combined ϕ_{3} value:
$\phi_{3}=(67 \pm 11)$ degrees

Note that at B factories the measurement of ϕ_{3} finally turned out to be much better than expected!

This is not the last word from B factories, analyses still to be finalized...

Summary: CP violation in the B system

B factories: CP violation in the B system: from the discovery (2001) to a precision measurement (2011) \rightarrow remarkable agreement with KM

EPS 2001

EPS 2011

Tomorrow:

-Flavor physics: introduction, with a little bit of history
-Flavor physics at B factories: CP violation
-Flavor physics at B factories: rare decays and searches for NP effects

-Super B factory

-Flavor physics at hadron machines: history, LHCb and LHCb upgrade

Back-up slides

CP violation in decay

$$
\begin{aligned}
& \text { EP in decay: }|\bar{A} / A| \neq 1 \\
& \quad \text { (and of course also }|\lambda| \neq 1 \text {) } \\
& a_{f}=\frac{\Gamma\left(B^{+} \rightarrow f, t\right)-\Gamma\left(B^{-} \rightarrow \bar{f}, t\right)}{\Gamma\left(B^{+} \rightarrow f, t\right)+\Gamma\left(B^{-} \rightarrow \bar{f}, t\right)}= \\
& =\frac{1-|\bar{A} / A|^{2}}{1+|\bar{A} / A|^{2}}
\end{aligned}
$$

Also possible for the neutral B.

CP violation in decay

CPV in decay: $|\bar{A} / A| \neq 1$: how do we get there?
In general, A is a sum of amplitudes with strong phases δ_{i} and weak phases ϕ_{i}. The amplitudes for anti-particles have same

$$
\begin{aligned}
& A_{f}=\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)} \\
& \bar{A}_{\bar{f}}=\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}
\end{aligned}
$$ strong phases and opposite weak phases ->

$$
\begin{array}{r}
\left|\frac{\bar{A}_{\bar{f}}}{A_{f}}\right|=\left|\frac{\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}}{\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)}}\right| \\
\left|A_{f}\right|^{2}-\left|\bar{A}_{\bar{f}}\right|^{2}=\sum_{i, j} A_{i} A_{j} \sin \left(\varphi_{i}-\varphi_{j}\right) \sin \left(\delta_{i}-\delta_{j}\right)
\end{array}
$$

CPV in decay: need at least two interfering amplitudes with different weak and strong phases.

CP violation in mixing

\&p in mixing: $|q / p| \neq 1$
(again $|\lambda| \neq 1)$

In general: probability for a B to turn into an anti- B can differ from the probability for an anti-B to turn into a B.

$$
\begin{aligned}
& \left|B_{\text {phys }}^{0}(t)\right\rangle=g_{+}(t)\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left|\bar{B}^{0}\right\rangle \\
& \left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle=(p / \overleftarrow{q}) g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Example: semileptonic decays:

$$
\begin{aligned}
& \left\langle l^{-} v X\right| H\left|B_{\text {phys }}^{0}(t)\right\rangle=(q / p) g_{-}(t) A^{*} \\
& \left\langle l^{+} v X\right| H\left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle=(p / q) g_{-}(t) A
\end{aligned}
$$

CP violation in mixing

$$
\begin{aligned}
& a_{s l}=\frac{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow l^{+} v X\right)-\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow l^{-} v X\right)}{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow l^{+} v X\right)+\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow l^{-} v X\right)}= \\
& =\frac{|p / q|^{2}-|q / p|^{2}}{|p / q|^{2}+|q / p|^{2}}=\frac{1-|q / p|^{4}}{1+|q / p|^{4}}
\end{aligned}
$$

-> Small, since to first order $|\mathrm{q} / \mathrm{p}| \sim 1$. Next order:

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}\left[1-\frac{1}{2} \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)\right]
$$

Expect $\mathrm{O}(0.01)$ effect in semileptonic decays

CP violation in the interference between decays with and without mixing

$$
\begin{aligned}
& a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}= \\
& =\frac{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}-\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}+\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}= \\
& =\frac{\left|(p / q) i \sin (\Delta m t / 2) A_{f_{C P}}+\cos (\Delta m t / 2) \bar{A}_{f_{C P}}\right|^{2}-\mid \cos (\Delta m t / 2) A_{f}}{A_{f}}+\left.(q / p) i \sin (\Delta m t / 2) \bar{A}_{f_{C P}}\right|^{2} \\
& \left|(p / q) i \sin (\Delta m t / 2) A_{f_{C P}}+\cos (\Delta m t / 2) \bar{A}_{f_{C P}}\right|^{2}+\left|\cos (\Delta m t / 2) A_{f_{C P}}+(q / p) i \sin (\Delta m t / 2) \bar{A}_{f_{C P}}\right|^{2}
\end{aligned}
$$

Time evolution for B and anti-B from the $Y(4 s)$

The time evolution for the B anti- B pair from $Y(4 s)$ decay

$$
\begin{aligned}
& R\left(t_{t a g}, t_{f_{C P}}\right)=e^{-\Gamma\left(t_{\text {tag }}+t_{\text {cPP }}\right.}\left|\overline{A_{\text {tag }}}\right|^{2}\left|A_{f_{C P}}\right|^{2} \\
& {\left[1+\left|\lambda_{f_{C P}}\right|^{2}+\cos \left[\Delta m\left(t_{\text {tag }}-t_{f_{C P}}\right)\right]\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right)\right.} \\
& \left.-2 \sin \left(\Delta m\left(t_{\text {tag }}-t_{f_{C P}}\right)\right) \operatorname{Im}\left(\lambda_{f C P}\right)\right]
\end{aligned}
$$

$$
\text { with } \quad \lambda_{f c p}=\frac{q}{p} \frac{\bar{A}_{f c p}}{A_{f c p}}
$$

\rightarrow in asymmetry measurements at $\mathrm{Y}(4 \mathrm{~s})$ we have to use $\mathrm{t}_{\text {ftag }}-\mathrm{t}_{\text {fCP }}$ instead of absolute time t .

Identification with dE/dx measurement

$\mathrm{dE} / \mathrm{dx}$ performance in a large drift chamber.

Essential for hadron identification at low momenta.

Why penguin?

Example: $\mathrm{b} \rightarrow \mathrm{s}$ transition

Peter Križan, Ljubljana

$\mathrm{K}^{-} \pi^{+}$- tree vs penguin

Penguin amplitudes for $B \rightarrow K^{+} \pi^{-}$and $B \rightarrow \pi^{+} \pi^{-}$are expected to be equal. Contribution to $\mathrm{A}(\mathrm{uus})$ in $\mathrm{K}^{+} \pi^{-}$ enhanced by λ in comparison to $\pi^{+} \pi^{-}$
$B \rightarrow K^{+} \pi^{-}$tree contribution suppressed by λ^{2} vs $\pi^{+} \pi^{-}$. Experiment: $\mathrm{Br}\left(\mathrm{B} \rightarrow \mathrm{K}^{+} \pi^{-}\right)=1.8510^{-5}, \mathrm{Br}\left(\mathrm{B} \rightarrow \pi^{+} \pi^{-}\right)=0.4810^{-5}$
$\rightarrow \operatorname{Br}\left(\mathrm{B} \rightarrow \pi^{+} \pi^{-}\right) \sim 1 / 4 \mathrm{Br}\left(\mathrm{B} \rightarrow \mathrm{K}^{+} \pi^{-}\right) \rightarrow$ penguin contribution must be sizeable

$\mathrm{B}->\pi^{+} \pi^{\text {- }}$: interpretation

Interpretation:

tree level
tree +

$$
A_{\pi \pi}=0
$$

$$
\rightarrow \quad A_{\pi \pi} \propto \sin \delta
$$

$$
S_{\pi \pi}=\sin \left(2 \phi_{2}\right) \rightarrow S_{\pi \pi}=\sqrt{1-A_{\pi \pi}^{2} \sin \left(2 \phi_{2 e f f}\right)} \text { direct } \mathbb{} \text { ep }
$$

$$
\begin{aligned}
& A(u \bar{u} d)=V_{c b} V_{c d}{ }^{*}\left(P_{d}^{c}-P_{d}^{t}\right)+V_{u b} V_{u d}{ }^{*}\left(T_{u \bar{u} d}+P_{d}^{u}-P_{d}^{t}\right)= \\
& =V_{u b} V_{u d}{ }^{*} T_{u \bar{u} d}\left[1+\left(P_{d}^{u}-P_{d}^{t}\right)+\left(V_{c b} V_{c d}{ }^{*} / V_{u b} V_{u d}{ }^{*}\right)\left(P_{d}^{e}-P_{d}^{t}\right)\right]
\end{aligned} \quad \gamma \equiv \phi_{3} \equiv \arg \left(\frac{V_{d d} V_{u b}^{*}}{V_{c d} V_{c b}{ }^{*}}\right)
$$

How to extract ϕ_{2}, δ and $|\mathrm{P} / \mathrm{T}|$?

$\phi_{\text {2eff }}$ depends on $\delta, \phi_{3}, \phi_{2}$ and $|P / T|$

$$
\pi=\phi_{1}+\phi_{2}+\phi_{3} \rightarrow \phi_{2 \text { eff }} \text { depends on } \delta, \phi_{1}, \phi_{2} \text { and }|P / T|
$$

ϕ_{1} : wel1 measured
penguin amplitudes $B \rightarrow K^{+} \pi^{-}$and $B \rightarrow \pi^{+} \pi^{-}$are equal
\rightarrow limits on $|\mathrm{P} / \mathrm{T}|$ (~0.3);
considering the full interval of δ values one can obtain interval of ϕ_{2} values;
isospin relations can be used to constrain δ (or better to say $\phi_{2}-\phi_{2 \text { eff }}$);

$B \rightarrow \pi^{+} \pi^{-}$: results of the fit, plotted with background subtracted

CP asymmetry in time integrated rates ('direct CP', also for charged B)

$$
a_{f}=\frac{\Gamma(B \rightarrow f)-\Gamma(\bar{B} \rightarrow \bar{f})}{\Gamma(B \rightarrow f)+\Gamma(\bar{B} \rightarrow \bar{f})}=\frac{1-|\bar{A} / A|^{2}}{1+|\bar{A} / A|^{2}}
$$

Need $|\bar{A} / A| \neq 1$: how do we get there?
In general, A is a sum of amplitudes with strong phases δ_{i} and weak phases ϕ_{i}. The amplitudes for anti-particles have the same

$$
\begin{aligned}
& A_{f}=\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)} \\
& \bar{A}_{\bar{f}}=\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}
\end{aligned}
$$ strong phases and opposite weak phases \rightarrow

$$
\begin{aligned}
& \left|A_{f}\right|^{2}-\left|\bar{A}_{\bar{f}}\right|^{2}=\sum_{i, j} A_{i} A_{j} \sin \left(\varphi_{i}-\varphi_{j}\right) \sin \left(\delta_{i}-\delta_{j}\right) \\
& \quad \rightarrow \text { Need at least two interfering amplitudes } \\
& \text { with different weak and strong phases. }
\end{aligned}
$$

$\mathrm{B}->\pi^{+} \pi^{\text {- }}$: interpretation

Interpretation:

tree level
strong phase diff. P-T
$\left.\lambda_{\pi \pi}=e^{2 i \phi_{2}} \quad \rightarrow \quad \lambda_{\pi \pi}=e^{2 i \phi_{2}} \frac{1+|P / T| e^{i \delta+i \phi_{3}}}{1+|P / T| e^{i \delta-i \phi_{3}}} \equiv \lambda_{\pi \pi} \right\rvert\, e^{2 i \phi_{2 e f f}}$
$A_{\pi \pi}=0 \quad \rightarrow \quad A_{\pi \pi} \propto \sin \delta \quad \begin{aligned} & \text { weak phase } \\ & \text { (changes sign) }\end{aligned}$
$S_{\pi \pi}=\sin \left(2 \phi_{2}\right) \rightarrow S_{\pi \pi}=\sqrt{1-A^{2}{ }_{\pi \pi}} \sin \left(2 \phi_{2 e f f}\right)$
$\phi_{\text {2eff }}$ depends on $\delta, \phi_{3}, \phi_{2}$ and $|\mathrm{P} / \mathrm{T}|$ $\pi=\phi_{1}+\phi_{2}+\phi_{3} \rightarrow \phi_{2 \text { eff }}$ depends on $\delta, \phi_{1}, \phi_{2}$ and $|P / T|$
ϕ_{1} : well measured
Peter Križan, Ljubljana

- Inputs from:

Gronau-London Isospin analysis

$$
\begin{aligned}
& B^{0} \rightarrow \pi^{+} \pi^{-} \\
& B^{+} \rightarrow \pi^{+} \pi^{0} \\
& B^{0} \rightarrow \pi^{0} \pi^{0}
\end{aligned}
$$

How do I read plots like this?

- $1-C L=1$: central value reported from measurements, before considering uncertainties.
-1-CL $=0$: Region excluded by experiment.
- If we think in terms of Gaussian errors, then $1-C L=0.317,0.046$, 0.003 correspond to regions allowed at $1 \sigma, 2 \sigma$ and 3σ.

From: Adrian Bevan, slides at Helmholz International
Summer School, Dubna, Russia, August 11-21, 2008

Gronau-London Isospin analysis

How do I read plots like this?

- At $68.3 \% \mathrm{CL}=1 \sigma$ for Gaussian errors we have the following allowed regions for α :

$$
\begin{aligned}
& \alpha<7.5^{\circ} \\
& 82.5<\alpha<103.1^{\circ} \\
& 118.0<\alpha<152.4^{\circ} \\
& \alpha>166.7^{\circ}
\end{aligned}
$$

From: Adrian Bevan, slides at Helmholz International
Summer School, Dubna, Russia, August 11-21, 2008

ϕ_{3} : Binned Dalitz plot analysis

Solution: use binned Dalitz plot and deal with numbers of events in bins.
[A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003)]
[A. Bondar, A. P. EPJ C 47, 347 (2006); EPJ C 55, 51 (2008)]

$$
\begin{aligned}
M_{i}^{ \pm} & =h\left\{K_{i}+r_{B}^{2} K_{-i}+2 \sqrt{K_{i} K_{-i}}\left(x_{ \pm} c_{i}+y_{ \pm} s_{i}\right)\right\} \\
x_{ \pm} & =r_{B} \cos \left(\delta_{B} \pm \phi_{3}\right) \quad y_{ \pm}=r_{B} \sin \left(\delta_{B} \pm \phi_{3}\right)
\end{aligned}
$$

$M_{i}^{ \pm}$: numbers of events in $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$bins from $B^{ \pm} \rightarrow D K^{ \pm}$ K_{i} : numbers of events in bins of flavor $\bar{D}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$from $D^{*} \rightarrow D \pi$. c_{i}, s_{i} contain information about strong phase difference between symmetric Dalitz plot points ($m_{K_{S}^{0} \pi^{+}}^{2}, m_{K_{S}^{0} \pi^{-}}^{2}$) and ($m_{K_{S}^{0} \pi^{-}}^{2}, m_{K_{S}^{0} \pi^{+}}^{2}$):

$$
c_{i}=\left\langle\cos \Delta \delta_{D}\right\rangle, \quad s_{i}=\left\langle\sin \Delta \delta_{D}\right\rangle
$$

ϕ_{3} : Obtaining c_{i}, s_{i}

Coefficients c_{i}, si can be obtained in $\psi(3770) \rightarrow D^{0} \bar{D}^{0}$ decays.
Use quantum correlations between D^{0} and \bar{D}^{0}.

- If both D decay to $K_{S}^{0} \pi^{+} \pi^{-}$, the number of events in i-th bin of $D_{1} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$and j-th bin of $D_{2} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$is

$$
M_{i j}=K_{i} K_{-j}+K_{-i} K_{j}-2 \sqrt{K_{i} K_{-i} K_{j} K_{-j}}\left(c_{i} c_{j}+s_{i} s_{j}\right)
$$

\Rightarrow constrain c_{i} and s_{i}.

- If one D decays to a CP eigenstate, the number of events in i-th bin of another $D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$is

$$
M_{i}=K_{i}+K_{-i} \pm 2 \sqrt{K_{i} K_{-i}} c_{i}
$$

\Rightarrow constrain c_{i}.
c_{i}, s_{i} measurement has been done by CLEO and can be done in future at BES-III.

CKM matrix

3×3 ortogonal matrix: 3 parameters - angles
3×3 unitary matrix: 18 parameters, 9 conditions $=9$ free parameters, 3 angles and 6 phases
6 quarks: 5 relative phases can be transformed away (by redefinig the quark fields)
1 phase left -> the matrix is in general complex

$$
\begin{aligned}
& V_{\text {CKM }}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{13}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right) \\
& \mathrm{s}_{12}=\sin \theta_{12}, \mathrm{c}_{12}=\cos \theta_{12} \text { etc. }
\end{aligned}
$$

Diagrams for $\mathrm{B} \rightarrow \pi \pi, \mathrm{K} \pi$ decays

$\pi \pi$

-Penguin amplitudes (without CKM factors) expected to be equal in both.

- $\operatorname{BR}(\pi \pi) \sim 1 / 4 \operatorname{BR}(K \pi)$
$\bullet K \pi$: penguin dominant \rightarrow penguin in $\pi \pi$ must be important

