

Universität Karlsruhe (TH) Research University • founded 1825

Experiments at e⁺-e⁻ flavour factories and LHCb

Part 4: Super Flavour Factories

Peter Križan

University of Ljubljana and J. Stefan Institute

University of Ljubljana

"Jožef Stefan" Institute

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau v$, $D\tau v$) by fully reconstructing the other B meson
- Observation of D mixing
- CP violation in $b \rightarrow$ s transitions: probe for new sources if CPV
- Forward-backward asymmetry (A_{FB}) in b \rightarrow sl⁺l⁻ has become a powerfull tool to search for physics beyond SM.
- Observation of new hadrons

- Several issus have not been fully understood
- Need much more statistics (x100)!

List a few of them \rightarrow

$A_{FB}(B \rightarrow K^* I^+ I^-)[q^2]$ at a Super B Factory

Zero-crossing q² for A_{FB} will be determined with a 5% error with 50ab⁻¹.

Strong competition from LHCb and ATLAS/CMS

Search for NP: $b \rightarrow sqq$

Searches for new sources of quark mixing and CP violation

CP asymmetries of penguin dominated B decays

300

250

H[±] Mass (GeV/c^{*}) 120

100

50

Charged Higgs limits from $B^- \rightarrow \tau^- \nu_{\tau}$

If the theoretical prediction is taken for \mathbf{f}_{B} \rightarrow limit on charged Higgs mass vs. tan β

$$r_{H} = \frac{BF(B \to \tau \nu)}{BF(B \to \tau \nu)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2}\beta\right)^{2}$$

Belle 413-100 BB (95.5% C.L.)

LEP Excluded (95% C.L.)

40

tan β

20

Tevatron Run I

Excluded (95% C.L.)

60

80

100

- Proceed through electroweak penguin + box diagram.
- Sensitive to New Physics in the loop diagram.
- Theoretically clean: no long distance contributions.
- May be sensitive to light dark matter (C. Bird, PRL 93, 201803 (2004))

$B \rightarrow K^{(*)} vv$: prospects for 10/ab

Assuming no changes in the analysis & detector:

LFV and New Physics

10⁻⁹

10-10

Non-Universal Z'

SUSY+Higgs

10⁻⁸

 10^{-7}

bljana 10

Precision measurements of τ decays

LF violating τ decay?

- There is a good chance to see new phenomena:
 CPV in B decays from the new physics (non KM)
 Lepton flavor violations in τ decays.
- They will help to diagnose (if found) or constraint (if not found) new physics models.
- Even in the worst case scenario (such as MFV), $B \rightarrow \tau v$, $D\tau v$ can probe the charged Higgs in large tan β region.
- Physics motivation is independent of LHC.
 - If LHC finds NP, precision flavour physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be an unique way to search for the TeV scale physics.

Super B Factory Motivation 2

• Two lessons from history: the top quark

• There are many more topics: CPV in charm, new hadrons, ...

The KEKB Collider & Belle Detector

- e⁻ (8 GeV) on e⁺(3.5 GeV)
 - √s ≈ m_{γ(4S)}
 - Lorentz boost: $\beta \gamma = 0.425$
- 22 mrad crossing angle
- Operating since 1999

Peak luminosity (WR!) : **2.1 x 10³⁴ cm⁻²s⁻¹**

Peter Križan, Ljubljana

The KEKB Performance

Luminosity Records:

- Peak L = $2.1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ (2x the design value)
- Daily $\int Ldt = 1.5 \, fb^{-1}$ (2.5 x the design value)
- **Total ∫Ldt ~ 950 fb⁻¹** (as of July 2009)

Luminosity Prospects

Luminosity: Two Options

High Current

Slightly smaller β_{y}^{*} 6.5(LER)/5.9(HER) \rightarrow 3.0/6.0 Increase beam currents 1.8A(LER)/1.45A(HER) \rightarrow 9.4A/4.1A Increase ξ_{y} 0.1(LER)/0.06(HER) \rightarrow 0.3 or more

> Evolution of design in original Letter of Intent (LoI) for SuperKEKB (2004)

Nano-Beam

Smaller β_{γ}^{*} 6.5(LER)/5.9(HER) \rightarrow 0.21/0.37 Slightly increase beam currents 1.8A(LER)/1.45A(HER) \rightarrow 3.6A/2.1A Close to original KEK design Keep ξ_{γ} 0.1(LER)/0.06(HER) \rightarrow 0.09/0.09

Proposed by P. Raimondi et al., along with Crab Waist, for use at the SuperB in Frascati

Decision expected by the end of 2009

Comparison of Parameters

P	reliminary	KEKB Design	KEKB Achieved (): with crab	SuperKEKB High-Current Option	SuperKEKB Nano-Beam Scheme
	β_y^* (mm)(LER/HER)	10/10	6.5/5.9 (5.9/5.9)	3/6	0.24/0.37
	ε _x (nm)	18/18	18(15)/24	24/18	2.8/2.0
	к(%)	1	0.8-1	1/0.5	1.0/0.7
	σ _y (μm)	1.9	1.1	0.85/0.73	0.084/0.072
	ξγ	0.052	0.108/0.056 (0.101/0.096)	0.3/0.51	0.09/0.09
	σ _z (mm)	4	~ 7	5(LER)/3(HER)	5
	I _{beam} (A)	2.6/1.1	1.8/1.45 (1.62/1.15)	9.4/4.1	3.6/2.1
	N _{bunches}	5000	~1500	5000	2119
	Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	1.76 (2.08)	53	80

High Current Option includes crab crossing and travelling focus.

Crab Waist : The SuperB solution

- Crab waist: modulation of the y-waist position, particles collides a same β_y realized with a sextupole upstream the IP.
- Minimization of nonlinear terms in the beam-beam interaction: reduced emittance growth, suppression of betatron and sincrobetatron coupling
- Maximization of the bunch-bunch overlap: luminosity gain
- Low wall power

SuperB and Super c-au are based on the crabwaist concept invented in 2006 by P.Raimondi in 2006.

TESTED IIN LNF WITH DAFNE (500 MeV beams)

Beams distribution at IP

Accellerator parameters

Parameter	Units	SuperB	Super-KEKB Old scheme	Super-KEKB Italian scheme
Energy	GeV	4x7	3.5x8	3.5x8
Luminosity	10 ³⁶ /cm ² /s	1.0	0.5 to 0.8	0.8
Beam currents	А	2.0x2.0	9.4x4.1	3.8x2.2
N _{bunches}		2400	5000	2230
Ey* (L/H)	pm	7/4	240/90	34/11
Ex* (L/H)	nm	2.8/1.6	24/18	2.8/2
By* (L/H)	mm	0.21/0.37	3	0.21/0.37
Bx* (L/H)	cm	3.5/2.0	20	4.4/2.5
Sz (L/H)	mm	5/5	5/3	5/5
Crossing angle (full)	mrad	60	30 to 0	60
RF power (AC line)	MW	26	90	>50
Tune shifts (L/H)		0.125/0.125	0.3/0.51	0.081/0.081

Another candidate: SuperB near Frascati

Or FRASCATI With slightly different parameters

LP 2009 August 20,2009

Requirements for the Detector

Critical issues at L= 8 x 10^{35} /cm²/sec

- Higher background
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate
 higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification $\rightarrow s \mu \mu$ recon. eff.
 - hermeticity $\rightarrow v$ "reconstruction"

Belle Upgrade for Super-B

PXD+SVD Upgrade

- Sensors of the innermost layer: Normal double sided Si detector (DSSD) → DEPFET Pixel sensors
- Configuration: 4 layers → 6 layers (outer radius = 8cm→14cm)
 - More robust tracking
 - Higher Ks vertex reconstruction efficiency
- Inner radius: $1.5 \text{cm} \rightarrow 1.3 \text{cm}$
 - Better vertex resolution
- Strip Readout chip: VA1TA \rightarrow APV25
 - Reduction of occupancy coming from 10 beam background.
 - Pipeline readout to reduce dead time.

DEPFET Principle

p-channel FET on a completely depleted bulk

A deep n-implant creates a potential minimum for electrons under the gate ("internal gate")

Signal electrons accumulate in the internal gate and modulate the transistor current $(g_q \sim 400 \text{ pA/e}^-)$

```
Accumulated charge can be removed by a clear contact ("reset")
```

```
Invented in MPI Munich
```

Fully depleted:

 \rightarrow large signal, fast signal collection

Low capacitance, internal amplification \rightarrow low noise

Depleted p-channel FET

Transistor on only during readout: low power

Complete clear \rightarrow no reset noise

DEPFET Performance

Very preliminary (single tracks, no background)

DEPFET: L1 1.3 cm (32µm x 50µm) L2 1.6 cm (32µm x 50µm) thickness: 50µm, noise 100e DSSD L3/L4/L5/L6: 4.5/7.0/10/13.8cm (50µm x 75µm) thickness 300µm, noise 1600e beam pipe radius: 1cm (Be with 10mm Au layer)

Substantial improvement compared to Belle SVD2

PXD will be delivered by European groups

Remember $B \rightarrow \pi\pi$ decays: $B \rightarrow \pi K$ rate 10x bigger than $B \rightarrow \pi\pi!$

 \rightarrow We would see no effect without excellent PID!

Present Belle: threshold Cherenkov counter ACC (aerogel Cherenkov counter)

K (below threshold) vs. π (above) by properly choosing n for a given kinematic region (more energetic particles fly in the 'forward region')

Detector unit: a block of aerogel and two fine-mesh PMTs

Fine-mesh PMT: works in high B fields

Belle ACC : threshold Cherenkov counter

expected yield vs p

NIM A453 (2000) 321

yield for 2GeV<p<3.5GeV: expected and measured number of hits

Endcap: Proximity focusing RICH

 \rightarrow 5 σ separation with N_{pe}~10

pion beam (π 2) at KEK

Photon detector: array of 16 H8500 PMTs

Clear rings, little background

Beam test: Cherenkov angle resolution and number of photons

NIM A521(2004)367; NIM A553(2005)58

Beam test results with 2cm thick aerogel tiles: >4 σ K/ π separation

 \rightarrow Number of photons has to be increased.

How to increase the number of photons?

Radiator with multiple refractive indices

How to increase the number of photons without degrading the resolution?

Radiator with multiple refractive indices

Such a configuration is only possible with aerogel (a form of Si_xO_y) – material with a tunable refractive index between 1.01 and 1.13.

Aerogel RICH – test results

Photon detectors for the Aerogel RICH

Multi-pixel photodetector to measure single photon positions in B=1.5T

→HAPD

→MCP-PMT

→G-APD

SiPMs for Aerogel RICH

Main challenge: R+D of a photon detector for operation in high magnetic fields (1.5T). Candidates:

•MCP PMT: excellent timing, could be also used as a TOF counter

•HAPD: development with HPK

•SiPMs: easy to handle, but never before used for single photon detection (high dark count rate with single photon pulse height) \rightarrow use a <u>narrow time window</u> and <u>light concentrators</u>

Detector module for beam tests at KEK

Cherenkov ring with SiPMs

Peter Križan, Ljubljana

- SuperKEKB is a lab priority.
- The Japanese government has allocated 32 okuyen (\$32 M, €23 M) for upgrade R&D in FY 2009, as a part of its economic stimulus package.
- KEK has submitted a budget request for FY 2010 and beyond of \$350 M for construction.
- We are proceeding with R&D while awaiting approval of the construction budget request.

New Collaboration (Belle II)

- Belle II is a new international collaboration
 - Regular collaboration meetings (next 18-19 Nov 2009)
 - Significant European participation (A, CH, CZ, D, PL, RUS, SLO)

Peter Križan, Ljubljana

Peter Križan, Ljubljana

Summary

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance.
- Major upgrade in 2009-12 \rightarrow Super B factory, L x10 \rightarrow x40
- Essentially a new project, all components have to be replaced, nothing is frozen...
- A physics reach update is being prepared to be made public soon
- Expect a new, exciting era of discoveries, complementary to LHC
- You as young flavour theorists could be an important part of it!

More:

http://www-f9.ijs.si/~krizan/sola/flavianet-karlsruhe09/flavianet-karlsruhe09.html

Luminosity gain and upgrade items (preliminary)

Item	Gain	Purpose	
beam pipe	x 1.5	high current, short bunch, electron cloud	
IR($\beta_{x/y}^*$ =20cm/3 mm)	x 1.5	small beam size at IP	
low emittance(12 nm) & $v_x \rightarrow 0.5$	x 1.3	mitigate nonlinear effects with beam-beam	
crab crossing	x 2	mitigate nonlinear effects with beam-beam	
RF/infrastructure	x 3	high current	
DR/e ⁺ source	x 1.5	low β^* injection, improve e ⁺ injection	
charge switch	x ?	electron cloud, lower e+ current	

Super-KEKB (cont'd)

Ante-chamber /solenoid for reduction of electron clouds

