

Universität Karlsruhe (TH) Research University • founded 1825

Experiments at e⁺-e⁻ flavour factories and LHCb

Part 3: LHCb

Peter Križan

University of Ljubljana and J. Stefan Institute

University of Ljubljana

"Jožef Stefan" Institute

Why hadron machines?

•large bb production rates - compare to 1.1nb at Y(4s) •large boosts \rightarrow <L> = < $\beta\gamma$ > 480 μ m •in addition to B⁰/B⁺⁻ also B_s, B_c, Λ_{b} ...

Why hadron machines?

Production	$e^+e^- \to \Upsilon(4s) \to B\bar{B}$	$e^+e^- \to Z^0 \to b\bar{b}$	$pA \rightarrow b\bar{b}X$	$p\bar{p} \rightarrow b\bar{b}X$	$p\bar{p}(p) \rightarrow b\bar{b}X$ forward
Accelerator	CESR, DORIS	LEP, SLD	HERA p	Tevatron	Tevatron, LHC
Spectrometer	PEPII, KEKB CLEO, ARGUS BaBar, BELLE	ALEPH, DELPHI, L3, OPAL, SLD	HERA-B	CDF, D0	BTeV, LHCb
$\sigma(b\bar{b})$	pprox 1nb	pprox 6nb	$\approx 12~{\rm nb}$	$\approx 50 \ \mu { m b}$	$\approx 100 \ \mu b \ (\approx 500 \ \mu b)$
$\sigma(bar{b}){:}\sigma(had)$	0.26	0.22	10^{-6}	10^{-3}	$2 \cdot 10^{-3} \ (6 \cdot 10^{-3})$
B^0, B^+	yes	yes	yes	yes	yes
$\left \begin{array}{c} B^0_s, B^+_c, \Lambda^0_b \end{array} ight $	no	yes	yes	yes	yes
boost $< \beta \gamma >$	0.06~(0.5)	6	≈ 20	$\approx 2-4$	$\approx 4 - 20$
$b\bar{b}$ production	B's at rest (in c.m.s)	$bar{b}$ back-to-back	$b\bar{b}$ not back-to-back	$b\bar{b}$ not back-to-back	$bar{b}$ not back-to-back
multiple events	no	no	yes, 4	yes	yes, 2
trigger	inclusive	inclusive	$\begin{array}{c} \text{lepton pairs} \\ \text{(high } p_t \text{ hadrons)} \end{array}$	$\begin{array}{c} \text{leptons only} \\ \text{(high } p_t \text{ hadrons)} \end{array}$	displaced vertex

bb events at e⁺e⁻ machines: BELLE

bb events at e⁺e⁻ machines: OPAL at LEP

ižan, Ljubljana

bb event at CDF

bb event at HERA-B:

Needle

 $B \rightarrow J/\psi Ks$

in haystack...

and the rest

bb event at LHCb:

Fully simulated bb event in Geant3

- MC Pythia 6.2 tuned on CDF and UA5 data
- Multiple pp interactions and spill-over effects included
- Complete description of material from TDRs
- Individual detector responses tuned on test beam results
- Complete pattern recognition in reconstruction:
- MC true information is never used

IM inclusive bb events produced in Summer 2002

- New "Spring" production ready: 10M events for September TDRs
- Sensitivities quoted here are obtained by rescaling earlier studies to the new yields

S DEGLI STUD

B detection in hadron collisions

What do we have to consider when designing a detector for b mesons and baryons at a hadron machine?

High particle fluxes \rightarrow radiation hard detectors

Early selection of interesting events \rightarrow selective triggers

Use the characteristic features of a B decay

Early selection of interesting events -> selective triggers:

• high p_t decay products: $B \rightarrow \mu\nu X$, $B \rightarrow J/\psi Ks \rightarrow \mu^+\mu^- \pi^+\pi^-$, $B \rightarrow \pi^+\pi^- \rightarrow$ helps because decay products carry a lot of momentum - typically ~1-2 GeV/c - perpendicularly to the flight direction (p_t), while backgrounds have low p_t

• displaced vertex: $\langle L \rangle = \langle \beta \gamma \rangle c\tau_{\mathbf{B}} = \langle \beta \gamma \rangle 480 \ \mu m \rightarrow$ helps because other decay products are promt = originate directly in the interaction point

Proof of principle: CDF, D0 at the Tevatron collider.

 \rightarrow Slides by M. Kreps

HERA-B

Fixed target B - Factory at HERA (DESY)

Originally designed for measurement of CP violation in $B{\rightarrow}J/\psi K_S{}^0$

HERA-B

 \rightarrow Need multiple events for 40 MHz interaction rate (=0.4 10⁸ s⁻¹)

 \rightarrow LHC like experiment 10 years before LHC

Silicon vertex detector: 8 double-sided silicon detector layers with retractable geometry (to move out of the beam during injection)

Excellent and reliable operation.

Reconstructed vertices On eight target wires ->

HERA-B RICH

Event display with two isolated rings

 \rightarrow no noise

Light collection system (imaging!) to:

- -Adapt the pad size
- -Eliminate dead areas

HERA-B RICH

____ Typical event

Still: it works actually very well!

pion, kaon and proton efficiency

NIM A516 (2004) 445

The Dilepton Trigger

HERA-B detector: data is read out and buffered for 12 μ s (proton bunches cross every 96 ns, 0.5 interactions/BX)

Pretriggers: ECAL cluster or hit coincidence in muon detector as trigger seed (custom hardware)

First Level Trigger (FLT): Track trigger in hardware using tracking detectors behind magnet, seeding by pretriggers

Second Level Trigger (SLT): FLT tracking confirmed, extrapolation to vertex detector, vertex fit (PC farm)

5 MHz

3 MHz

20 kHz

100 Hz

HERA-B: J/ψ Production

HERA-B: Open Beauty Production

Detached vertex analysis

- •First LHC like experiment before the LHC
- Designed with a very ambitious goal
- •Many components behaved extremly well (e.g. SVD, RICH)
- Several critical components were less successful (tracking)
- •Trigger efficiency (which heavily relied on the tracking system efficiency) was >10x lower than expected
- \rightarrow No precision tests in B physics were possible
- •Still: a solid physics program could be carried out (i.e. bb and cc production cross sections, a limit on $D > \mu\mu$, pentaquark searches)
- •HERA-B experience: An important input for LHC experiments

HERA-B Summary 2

- First LHC like experiment before the LHC \rightarrow messages for the LHC experiments
- -do not use micro-strip gas chambers (MSGC)
- -large area trackers are not easy
- -trigger processors can get saturated by high occupancy events which are not necessarily interesting
- -RICH counters are more robust than anticipated
- -retractable SVD works reliably

b-production in pp collisions at LHC

Cross section for bb pair production much higher at LHC

b-production in pp collisions

 Pairs of bb quarks are mostly produced in the forward/backward direction:

$$\sigma_{b\bar{b}} = 500 \mu b$$

 $10^{12} b\overline{b}$ produced per year

Figure 2.1: Polar angles of the b- and \overline{b} -hadrons calculated by the PYTHIA event generator.

LHCb Collaboration

Vertex locator...

Key element surrounding the IP:

Measure the position of the primary and the B_{d,s} vertices Used in L1 trigger.

Vertex locator

- 21 pairs of silicon strip detectors arrange in two retractable halves:
 - Strips with an R-φ geometry:
 - R strip pitch: 40-102 µm
 - φ strip pitch: 36-97 µm
 - 172k channels.
- Operated:
 - In vacuum, separated from beam vacuum by an Al foil
 - Close to the beam line (7 mm)
 - Radiation $\leq 1.5 \times 10^{14} \text{ n}_{ea}/\text{cm}^2$ per year
 - Cooled at -5 °C

VELO alignment

TED tracks perfect for VELO alignment: cross detector almost parallel to z-axis

21 stations of Si wafer pairs with r and ϕ strip readout

45 E 40 45 [m] 40 se 35 008 Resolution 2008 Resolution narv Resolution **R** strips **Binary Resolutio** Φ strips Test Beam Besoluti **د** 35 œ resolution in ÷ 30 30 25 25 20 20 F 15 15 10 10 redered or ed ered er 90 100 50 60 70 80 40 Pitch [µm] Pitch [um]

Resolution estimated from VELO hit residuals agrees well with expectations

Further improvement possible

Key elements to find tracks and to measure their momentum.

Overview of the tracking system

- Trigger Tracker:
 - Microstrip silicon detector
 - 144k channels
- Three T stations:
 - Inner tracker:
 - Microstrip Silicon detector
 - 130k channels
 - Outer tracker:
 - Straw tube (5 mm)
 - 56k channels

T Station: inner tracker part

Microstrips silicon detector:

- Same sensors as Trigger Tracker
- Four layers (0°, +5°, -5°, 0°)
- Strip length 11, 22 cm
- Radiation $\leq 9 \times 10^{12} n_{eq}/cm^2$ over 10 years
- Cooled -5 °C

T station: outer tracker part

- Straw tubes:
 - Four double layers (0°,+5°,-5°,0°)
 - Staw length 5 m read on both sides
 - $Ar/CF_4/CO_2$

Key elements to identify pions and kaons in the momentum range $p \in [2,100]$ GeV/*c*

Overview of the RICH

• RICH system divided in two detectors equipped with 3 radiators to cover the full acceptance and momentum range:

Peter Križan, Ljubljana

Photon detector HPD

- Novel photodetector:
 - 32×32 pixel sensor array (500×500 µm²)
 - 20 kV operation voltage
 - Demagnification factor ~5

Calorimeters...

Overview of the Calorimeters

• System subdivided in 3 parts:

Scintillating Pad Detector (SPD) and Preshower:

• Two layers of scintillator pads separated by a 1.5cm lead converter

Electromagnetic Calorimeter (ECAL):

- Shashlik types,
- Lead+ scintillator tiles
- 25 X₀
- . Hadronic calorimeter (HCAL):
 - Iron + scintillator tiles
 - $-5.6 \lambda_{I}$
- A total of 19k channels readout by Wave Length Shifter fibres connected to PMs or MaPMTs.

Trigger overview

10 MHz

L0: hight p_T + not too busy

Fully synchr. (40 MHz), 4µs latency

On custom boards

1 MHz

- **L1:** IP + high p_T
- Ave. latency: 1 ms (max 50 ms)
- Buffer: 58254 events

40 KHz

HLT + reconstruction

Full detector: ~ 40 kb / evt

Single PC farm ~1800 CPUs

~ 200 Hz

Level 0

- Fast search for 'high' p_T particles (calorimeters, muon syst)
 - Charged hadrons: HCAL (~ 3 GeV)
 - Electrons, photons, π^0 : ECAL (~ 3 GeV)
 - Muons: muon system (~ 1 GeV)

• Cut on global variables:

- Require minimum total E_T in HCAL (calorimeters)
 - Reduces background from halo-muons
- Rejection of multiple primary vertices and busy events (Pileup system, SPD) :
 - fake B signatures (IP)
 - Busy events spend trigger resources without being more signallike
 - Better throw them early and use bandwidth to relax other cuts

Performance: L0 x L1

• Efficiencies computed on offline selected events

- Overall L0xL1 efficiency:
 - 30% for
 - hadronic channels
 - $e/\gamma/\pi^0$ channels
 - 60-70% for di-muons
- Software and hardware prototyped and working, within time budget
 - see Trigger TDR, Sept 2003

- B_s system parameters
- Angles of the unitarity triangle: precise measurements
- FCNC processes
- Measurement of angle γ (ϕ_3)

Time dependent asymmetry at LHCb

- The proper time of the signal B decay is measured via:
 - the position of the primary and secondary vertexes;
 - the momentum of the signal B state from its decay products.

Event selection: (1)

Event selection: (2)

$$\mathbf{B}_{s} \to \mathbf{D}_{s}^{\pm}\mathbf{K}^{\mp} \to \left(\mathbf{K}^{+}\mathbf{K}^{-}\boldsymbol{\pi}^{\pm}\right)\mathbf{K}^{\mp}$$

1) Primary vertex.

2) D_s meson by using identified kaons and pions and a vertex constrained to the D_s mass.

3) B_s meson by combining a D_s with a kaon forming a vertex (no mass constraint).

4) Select B_s with an impact parameter ~0 and an invariant mass in the window $m_{\rm B_s} \pm 50 \,{\rm MeV}/c^2$

Resolution: $B_{s} \rightarrow D_{s}^{\pm}K^{\mp} \rightarrow (K^{+}K^{-}\pi^{\pm})K^{\mp}$

Primary vertex: 47µm

Flavour Tagging

- Several algorithms to determine the flavour of the signal B meson at production:
 - Opposite side:
 - e, µ from semileptonic b decays;
 - K[±] from b decays chain;
 - Inclusive vertex charge.
 - Same side:
 - K^{\pm} from fragmentation accompanying B_s meson.

Performance of Flavour Tagging

After passing trigger and offline cuts

Channel	$\varepsilon_{\mathrm{tag}}$ (%)	w~(%)	$\varepsilon_{\mathrm{eff}}$ (%)
$\mathrm{B}^{0} \rightarrow \pi^{+}\pi^{-}$	41.8 ± 0.7	34.9 ± 1.1	3.8 ± 0.5
${ m B}^0\! ightarrow{ m K}^+\pi^-$	43.2 ± 1.4	33.3 ± 2.1	4.8 ± 1.0
$\mathrm{B}^{0}\! ightarrow\mathrm{J}\psi\left(\mu\mu ight)\mathrm{K}_{\mathrm{S}}^{0}$	45.1 ± 1.3	$36.7{\pm}1.9$	$3.2{\pm}0.8$
$\mathrm{B}^{0} ightarrow \mathrm{J}/\psi (\mu\mu) \mathrm{K}^{st 0}$	41.9 ± 0.5	34.3 ± 0.7	4.1 ± 0.3
${ m B_s^0} ightarrow { m K^+K^-}$	49.8 ± 0.5	$33.0 {\pm} 0.8$	5.8 ± 0.5
${ m B_s^0} ightarrow \pi^+ { m K^-}$	49.5 ± 1.8	$30.4 {\pm} 2.6$	7.6 ± 1.7
${ m B_s^0} ightarrow { m D_s^-} \pi^+$	54.6 ± 1.2	$30.0{\pm}1.6$	8.7 ± 1.2
${ m B}^0_{ m s}\! ightarrow { m D}^{\mp}_{ m s}{ m K}^{\pm}$	54.2 ± 0.6	$33.4 {\pm} 0.8$	6.0 ± 0.5
$\mathrm{B^0_s} \to \mathrm{J} / \!\!\! \psi \left(\mu \mu \right) \phi$	50.4 ± 0.3	33.4 ± 0.4	5.5 ± 0.3

- Effective tagging efficiencies vary between 3 and 9% depending on the final state.
- In real physics analysis, the
 wrong tag fraction will be
 measured using control
 channels with similar
 topology, e.g.

$$B_d \rightarrow J / \psi K^{*0}$$
 for $B_d \rightarrow J / \psi K_s$

N.B. Effective tagging efficiencies is >20% at B factories, $\sim2\%$ at CDF/D0

• For 2 fb⁻¹ after trigger and offline selection:

Channel	B.R.	Yield	B/S(90% CL)
$\mathbf{B}_{\mathrm{d}} \to \mathbf{K}^{*0} \big(\mathbf{K}^{+} \boldsymbol{\pi}^{-} \big) \boldsymbol{\gamma}$	2.9×10^{-5}	3.5×10 ⁴	< 0.7
$\mathbf{B}_{\mathrm{s}} \to \varphi (\mathbf{K}^{+} \mathbf{K}^{-}) \gamma$	2.1×10^{-5}	9.3×10 ³	< 2.4
$\mathbf{B}_{\mathrm{d}} \to \omega (\pi^{+} \pi^{-} \pi^{0}) \mathbf{y}$		40	< 3.5
$\mathbf{B}_{\mathrm{d}} \to \mathbf{K}^{*0} \big(\mathbf{K}^{+} \boldsymbol{\pi}^{-} \big) \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$	8×10^{-7}	4.4×10^{3}	< 2.0
$\mathbf{B}_{\mathrm{d}} \to \varphi \left(\mathbf{K}^{+} \mathbf{K}^{-} \right) \mathbf{K}_{\mathrm{S}} \left(\pi^{+} \pi^{-} \right)$	1.4×10^{-6}	0.8×10^{3}	< 0.2
$\mathbf{B}_{\mathrm{s}} \rightarrow \varphi \left(\mathbf{K}^{+} \mathbf{K}^{-} \right) \varphi \left(\mathbf{K}^{+} \mathbf{K}^{-} \right)$	1.3×10 ⁻⁶	1.2×10 ³	<1.1
$B_s \rightarrow \mu^+ \mu^-$	3.5×10^{-9}	17	< 5.7

 Promising physics potential to study numerous loopinduced rare decays.
 Still room to adjust trigger in order to increase the rate for channels of topical interest

LHCb key measurements

(to search for NP in CP violation and Rare Decays)

Key Measurements	Accuracy in 1 nominal year
	(2 fb ⁻¹)
In CP – violation	

\checkmark	β _s	0.03
\checkmark	γ in trees	<i>4.5°</i>
\checkmark	γ in loops	7°

□ In Rare Decays

✓ $B_s \rightarrow \mu\mu$ ✓ $B \rightarrow K^*\mu\mu$ ✓ Polarization of photon in radiative penguin decays $delta = 0.5 \text{ GeV}^2$ $\sigma(s0) = 0.5 \text{ GeV}^2$ $\sigma(H_R/H_L) = 0.1 (in B_s \rightarrow \phi\gamma)$ $\sigma(H_R/H_L) = 0.1 (in B_d \rightarrow K^*e^+e^-)$

Measurements highlighted in red will become competitive first

 $B^0 \to K^{*0} \mu^+ \mu^ A_{FB}(s)$

• Forward-backward asymmetry in the $\mu\mu$ rest frame $A_{FB}(s)$ is a sensitive probe of new physics

 Sensitivity at 2 fb⁻¹: zero point location to +-0.5 GeV²

Events registered on September 10, 2008 for a LHC operation (media day)

- Beam 1 was circulated during few hours (correct direction for LHCb)
- Readout of consecutive triggers, 8 events every 25 ns
- Two types of events have been observed: a'la beam gas events or beam halo muons and splashy events hitting on collimator
- LHCb made very successful start !!!

Physics goals of 2010

Early measurements

- Calibration signals and minimum bias physics: 10⁸ events

Key channels available in min bias data with simple trigger:

Physics goals of 2010

□ Analysis commissioning in hadronic modes

Channel	Yield / 10 pb ⁻¹	
B ⁰ → K π	340	
В → D(Кπ)Х	31k	
B⁺→D(Kπ)π⁺	1900	
B⁺→D(Kπ)K⁺	160	
$B_s \rightarrow D_s \pi^+$	320	

Detailed studies of $D \rightarrow hh$ (rehearsal for $B \rightarrow hh$)

- Separate Kπ, KK, ππ and DCS Kπ
- Vertex and mass resolutions

- Lifetimes

Accumulate samples of $B \rightarrow D(K\pi)\pi$ ("ADS" control mode)

- Study background environment
- Look for any evidence of B⁺ / B⁻ asymmetries

Charm physics: 20 pb⁻¹ and upward

(Exciting possibilities even with low luminosity) An example: flavour tagged $D^0 \rightarrow KK$ events for measuring y_{CP} $y = \tau(D^0 \rightarrow K\pi) / \tau(D^0 \rightarrow KK) - 1$ and corresponding CP asymmetry

LHCb can collect ~ 10⁵ flavour tagged KK events with 20 pb⁻¹ (same statistics as BELLE with 540 fb⁻¹). Similar data sets for many related channels: $D^0 \rightarrow \pi\pi$, KK $\pi\pi$, K_S $\pi\pi$, K_SKK, $D^+ \rightarrow KK\pi$...

Prospects for most competitive measurements in 2010

With data sample of ~200 pb⁻¹ LHCb should be able to improve Tevatron sensitivity for $B_s \rightarrow \mu\mu$ and ϕ_s (present 'central' value from Tevatron would be confirmed at 5σ level)

29

LHCb summary

- LHCb is ready for data taking
- First data will be used for calibration of the detector and trigger in particular. First exploration of low Pt physics at LHC energies. Some high class measurements in the charm sector may be possible
- With 150 200 pb-1 data sample LHCb will reach Tevatron sensitivity in a few golden channels in the beauty sector
- With 10 fb-1 LHCb has an excellent opportunity to both discover New Physics and to elucidate its nature. LHCb have an important role to complement physics programme of ATLAS and CMS
- Study of possible LHCb upgrade, in order to collect ~100 fb-1 and investigate further interactions of New Particles with flavours, is underway

Fully simulated bb event in Geant3

- MC Pythia 6.2 tuned on CDF and UA5 data
- Multiple pp interactions and spill-over effects included
- Complete description of material from TDRs
- Individual detector responses tuned on test beam results
- Complete pattern recognition in reconstruction: MC true information is never used

• 1M inclusive bb events produced in Summer 2002

- New "Spring" production ready: 10M events for September TDRs
- Sensitivities quoted here are obtained by rescaling earlier studies to the new yields

LHCb CP reach

	Channel	Yield	Precision*
β	$B_d \rightarrow J/\psi K_s$	119 k	$\sigma(\beta) \approx 0.6^{\circ}$
γ	$B_{s} \rightarrow D_{s}K$ $B_{d} \rightarrow \pi\pi, B_{s} \rightarrow KK$	8 k 27 k, 35 k	$ σ(γ) ≈ 10^{\circ} $ $ σ(γ) ≈ 3^{\circ} $
Q	$B_d \rightarrow \pi^+ \pi^-$	27 k	$\sigma(\alpha) \approx 5^{\circ} - 10^{\circ}$
2δγ	$B_s \rightarrow J/\psi \phi$	128 k	$\sigma(2\delta\gamma) \approx 2^{\circ}$
V _{td} /V _{ts}	$B_s \rightarrow D_s \pi$	72 k	Δm_s up to 58 ps ⁻¹
rare decays	$B_d \rightarrow K^* \gamma$	20 k	

