Experiments at $\mathbf{e}^{+}-\mathbf{e}^{-}$flavour factories and LHCb

Part 1: Belle and BaBar I

Peter Križan

University of Ljubljana and J. Stefan Institute

Contents of this course

-Lecture 1: Belle/BaBar: Introduction, B factories, detectors, measurements of angles of the unitarity triangle
-Lecture 2: Belle/BaBar: measurements of sides of the unitarity triangle, rare decays of B and D mesons, mixing
-Lecture 3: LHCb
-Lecture 4: Super flavour factories
http://www-f9.ijs.si/~krizan/sola/flavianet-karlsruhe09/flavianet-karlsruhe09.html

- Slides
-Literature

Flavour physics

B factories main topic: flavour physics
... is about

- quarks
and
- their mixing
- CP violation

Flavour physics and CP violaton

Moments of glory in flavour physics are very much related to CP violation:
Discovery of CP violation (1964)
The smallness of $\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$predicts charm quark
GIM mechanism forbids FCNC at tree level
KM theory describing CP violation predicts third quark generation
$\Delta \mathrm{m}_{\mathrm{K}}=\mathrm{m}\left(\mathrm{K}_{\mathrm{L}}\right)-\mathrm{m}\left(\mathrm{K}_{\mathrm{S}}\right)$ predicts charm quark mass range
Frequency of $\mathrm{B}^{0} \mathrm{~B}^{0}$ mixing predicts a heavy top quark
Proof of Kobayashi-Maskawa theory $\left(\sin 2 \phi_{1}=\sin 2 \beta\right)$
Tools to find/constrain physics beyond SM: search for new sources of flavour/CP-violating terms

CP Violation

Fundamental quantity: distinguishes matter from anti-matter.

A bit of history:

- First seen in K decays in 1964
- Kobayashi and Maskawa propose in 1973 a mechanism to fit it into the Standard Model \rightarrow had to be checked in at least one more system, needed 3 more quarks
- Discovery of B anti-B mixing at ARGUS in 1987 indicated that the effect could be large in B decays (I.Bigi and T.Sanda)
- Many experiments were proposed to measure CP violation in B decays, some general purpose experiments tried to do it
- Measured in the B system in 2001 by the two dedicated spectrometers Belle and BaBar at asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$colliders B factories

What happens in the B meson system?

Why is it interesting? Need at least one more system to understand the mechanism of CP violation.

Kaon system: not easy to understand what is going on at the quark level (light quark bound system, large dimensions).
B has a heavy quark, a smaller system, and is easier for interpreting the experimental results.

First B meson studies were carried out in 70s at $\mathrm{e}^{+} \mathrm{e}^{-}$ colliders with cms energies $\sim 20 \mathrm{GeV}$, considerably above threshold ($\sim 2 \times 5.3 \mathrm{GeV}$)

B mesons: long lifetime

Isolate samples of high- p_{T} leptons (155 muons, 113 electrons) wrt thrust axis
Measure impact parameter δ wrt interaction point

Lifetime implies: \mathbf{V}_{cb} small
MAC: (1.8 $\pm 0.6 \pm 0.4) p s$
Mark II: (1.2 $\pm 0.4 \pm 0.3) p s$

Integrated luminosity at 29 GeV: 109 (92) pb ${ }^{-1}$ ~3,500 bb pairs

MAC, PRL 51, 1022 (1983) MARK II, PRL 51, 1316 (1983)

Systematic studies of B mesons: at Y(4s)

Systematic studies of B mesons at Y(4s)

80s-90s: two very successful experiments:
-ARGUS at DORIS (DESY)
-CLEO at CESR (Cornell)
Magnetic spectrometers at $\mathrm{e}^{+} \mathrm{e}^{-}$ colliders (5.3GeV+5.3GeV beams)

Large solid angle, excellent tracking and good particle identification (TOF, dE/dx, EM calorimeter, muon chambers).

Mixing in the B^{0} system

1987: ARGUS discovers BB mixing: B^{0} turns into anti- B^{0}

Reconstructed event

$$
\chi_{d}=0.17 \pm 0.05
$$

ARGUS, PL B 192, 245 (1987) cited >1000 times.

Time-integrated mixing rate: 25 like sign, 270 opposite sign dilepton events Integrated $Y(4 S)$ luminosity 1983-87: $103 \mathrm{pb}^{-1} \sim 110,000$ B pairs

Mixing in the B^{0} system

Large mixing rate \rightarrow high top mass (in the Standard Model)

The top quark has only been discovered seven years later!

Systematic studies of B mesons at $\mathrm{Y}(4 \mathrm{~s})$

ARGUS and CLEO: In addition to mixing many important discoveries or properties of

- B mesons
- D mesons
- τ^{-}lepton
- and even a measurement of ν_{τ} mass.

After ARGUS stopped data taking, and CESR considerably improved the operation, CLEO dominated the field in late 90s (and managed to compete successfully even for some time after the B factories were built).

Studies of B mesons at LEP

90 s: study B meson properties at the Z^{0} mass by exploiting
-Large solid angle, excellent tracking, vertexing, particle identification
-Boost of B mesons \rightarrow time evolution (lifetimes, mixing)
-Separation of one B from the other \rightarrow inclusive rare $b \rightarrow u$

Studies of B mesons at LEP and SLC

$\mathrm{B}^{0} \rightarrow$ anti- B^{0} mixing, time evolution

Fraction of events with like sign lepton pairs

Almost measured mixing in the B_{s} system (bad luck...)
Large number of B mesons (but by far not enough to do the CP violation measurements...)

Mixing \rightarrow expect sizeable CP Violation (CPV) in the B System

CPV through interference of decay amplitudes

CPV through interference of mixing diagram

CPV through interference between mixing and decảy amplitudes

Directly related to CKM parameters in case of a single amplitude

Golden Channel: $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$

* Soon recognized as the best way to study CP violation in the B meson system (I. Bigi and T. Sanda 1987)

Theoretically clean way to one of the parameters $\left(\sin 2 \phi_{1}\right)$

Use boosted BBbar system to measure the time evolution (P. Oddone)

Clear experimental signatures $\left(\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}, \mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{K}_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-}\right)$

Relatively large branching fractions for b->CCS ($\sim 10^{-3}$)
$=\rightarrow$ A lot of physicists were after this holy grail

Time evolution in the B system

An arbitrary linear combination of the neutral B-meson flavor eigenstates

$$
a\left|B^{0}\right\rangle+b\left|\bar{B}^{0}\right\rangle
$$

is governed by a time-dependent Schroedinger equation

$$
i \frac{d}{d t}\binom{a}{b}=H\binom{a}{b}=\left(M-\frac{i}{2} \Gamma\right)\binom{a}{b}
$$

M and Γ are 2×2 Hermitian matrices. CPT invariance $\rightarrow \mathrm{H}_{11}=\mathrm{H}_{22}$

$$
M=\left(\begin{array}{cc}
M & M_{12} \\
M_{12}^{*} & M
\end{array}\right), \Gamma=\left(\begin{array}{cc}
\Gamma & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma
\end{array}\right) \quad \text { diagonalize } \rightarrow
$$

Time evolution in the B system

The light B_{L} and heavy B_{H} mass eigenstates with eigenvalues $m_{H}, \Gamma_{H}, m_{L}, \Gamma_{L}$ are given by

$$
\begin{aligned}
& \left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle \\
& \left|B_{H}\right\rangle=p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

With the eigenvalue differences

$$
\Delta m_{B}=m_{H}-m_{L}, \Delta \Gamma_{B}=\Gamma_{H}-\Gamma_{L}
$$

They are determined from the M and Γ matrix elements

$$
\begin{aligned}
& \left(\Delta m_{B}\right)^{2}-\frac{1}{4}\left(\Delta \Gamma_{B}\right)^{2}=4\left(\left|M_{12}\right|^{2}-\frac{1}{4}\left|\Gamma_{12}\right|^{2}\right) \\
& \Delta m_{B} \Delta \Gamma_{B}=4 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right)
\end{aligned}
$$

The ratio p / q is

$$
\frac{q}{p}=-\frac{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}{2\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)}=-\frac{2\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)}{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}
$$

What do we know about Δm_{B} and $\Delta \Gamma_{B}$?
$\Delta m_{B}=(0.502+-0.007)$ ps $^{-1}$ well measured

$$
\rightarrow \Delta \mathrm{m}_{\mathrm{B}} / \Gamma_{\mathrm{B}}=\mathrm{x}_{\mathrm{d}}=0.771+-0.012
$$

$\Delta \Gamma_{\mathrm{B}} / \Gamma_{\mathrm{B}}$ not measured, expected $\mathrm{O}(0.01)$, due to decays common to B and anti-B - O(0.001).
$\rightarrow \Delta \Gamma_{\mathrm{B}} \ll \Delta \mathrm{m}_{\mathrm{B}}$

Since $\Delta \Gamma_{B} \ll \Delta m_{B}$

$$
\begin{aligned}
& \Delta m_{B}=2\left|M_{12}\right| \\
& \Delta \Gamma_{B}=2 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right) /\left|M_{12}\right|
\end{aligned}
$$

and

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}} \quad=\text { a phase factor }
$$

or to the
next order

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}\left[1-\frac{1}{2} \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)\right]
$$

B^{0} and \bar{B}^{0} can be written as an admixture of the states B_{H} and B_{L}

$$
\begin{aligned}
& \left|B^{0}\right\rangle=\frac{1}{2 p}\left(\left|B_{L}\right\rangle+\left|B_{H}\right\rangle\right) \\
& \left|\bar{B}^{0}\right\rangle=\frac{1}{2 q}\left(\left|B_{L}\right\rangle-\left|B_{H}\right\rangle\right)
\end{aligned}
$$

Time evolution

Any B state can then be written as an admixture of the states B_{H} and B_{L} and the amplitudes of this admixture evolve in time

$$
\begin{aligned}
& a_{H}(t)=a_{H}(0) e^{-i M_{H} t} e^{-\Gamma_{H} t / 2} \\
& a_{L}(t)=a_{L}(0) e^{-i M_{L} t} e^{-\Gamma_{L} t / 2}
\end{aligned}
$$

$A B^{0}$ state created at $t=0$ (denoted by $\mathrm{B}_{\text {phys }}$) has

$$
a_{H}(0)=a_{L}(0)=1 /(2 p) ;
$$

an anti- B at $\mathrm{t}=0$ (anti- $\mathrm{B}_{\text {phys }}$) has

$$
a_{\mathrm{H}}(0)=-\mathrm{a}_{\mathrm{L}}(0)=1 /(2 \mathrm{q})
$$

At a later time t, the two coefficients are not equal any more because of the difference in phase factors $\exp (-\mathrm{iMt})$
\rightarrow initial B^{0} becomes a linear combination of B and anti- B

Time evolution of B's

Time evolution can also be written in the B^{0} in $\overline{\mathrm{B}}^{0}$ basis:

$$
\begin{aligned}
\left|B_{\text {phys }}^{0}(t)\right\rangle & =g_{+}(t)\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left|\bar{B}^{0}\right\rangle \\
\left|\bar{B}_{p h y s}^{0}(t)\right\rangle & =(p / q) g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

with

$$
\begin{gathered}
g_{+}(t)=e^{-i M t} e^{-\Gamma t / 2} \cos (\Delta m t / 2) \\
g_{-}(t)=e^{-i M t} e^{-\Gamma t / 2} i \sin (\Delta m t / 2) \\
M=\left(M_{H}+M_{L}\right) / 2
\end{gathered}
$$

If B mesons were stable ($\Gamma=0$), the time evolution would look like:

$$
\begin{aligned}
& g_{+}(t)=e^{-i M t} \cos (\Delta m t / 2) \\
& g_{-}(t)=e^{-i M t} i \sin (\Delta m t / 2)
\end{aligned}
$$

\rightarrow Probability that a B turns into its anti-particle $\quad \rightarrow$ beat

$$
\left|\left\langle\bar{B}^{0} \mid B_{\text {phys }}^{0}(t)\right\rangle\right|^{2}=|q / p|^{2}\left|g_{-}(t)\right|^{2}=|q / p|^{2} \sin ^{2}(\Delta m t / 2)
$$

\rightarrow Probability that a B remains a B

$$
\left|\left\langle B^{0} \mid B_{\text {phys }}^{0}(t)\right\rangle\right|^{2}=\left|g_{+}(t)\right|^{2}=\cos ^{2}(\Delta m t / 2)
$$

\rightarrow Expressions familiar from quantum mechanics of a two level system

B mesons of course do decay \rightarrow

B^{0} at $t=0$
Evolution in time
-Full line: B^{0}
-dotted: B ${ }^{0}$

T : in units of $\tau=1 / \Gamma$

Decay probability

$$
\begin{array}{ll}
\left.\hline \text { Decay probability } \quad P\left(B^{0} \rightarrow f, t\right) \propto|\langle f| H| B_{p h y s}^{0}(t)\right\rangle\left.\right|^{2}
\end{array}
$$

Decay amplitudes of B and antiB to the same final state \boldsymbol{f}

$$
\begin{aligned}
& A_{f}=\langle f| H\left|B^{0}\right\rangle \\
& \bar{A}_{f}=\langle f| H\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Decay amplitude as a function of time:

$$
\begin{aligned}
& \langle f| H\left|B_{p h y s}^{0}(t)\right\rangle=g_{+}(t)\langle f| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\langle f| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f}+(q / p) g_{-}(t) \bar{A}_{f}
\end{aligned}
$$

... and similarly for the anti-B

CP violation: three types

Decay amplitudes of B and anti-B to the same final state \boldsymbol{f}

$$
\begin{aligned}
& A_{f}=\langle f| H\left|B^{0}\right\rangle \\
& \bar{A}_{f}=\langle f| H\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Define a parameter λ

$$
\lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}
$$

Three types of CP violation (CPV):

$$
\left.\begin{array}{l}
\text { es in decay: }|\bar{A} / A| \neq 1 \\
\text { \&p in mixing: }|q / p| \neq 1
\end{array}\right\}|\lambda| \neq 1
$$

eß in interference between mixing and decay: even if $|\lambda|=1$ if only $\operatorname{Im}(\lambda) \neq 0$

CP violation in the interference between decays with and without mixing

CP violation in the interference between mixing and decay to a state accessible in both B^{0} and anti- B^{0} decays

For example: a CP eigenstate f_{CP} like $\pi^{+} \pi^{-}$

We can get CP violation if $\operatorname{Im}(\lambda) \neq 0$, even if $|\lambda|=1$

CP violation in the interference between decays with and without mixing

Decay rate asymmetry:

$$
a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}
$$

Decay rate: $\left.\quad P\left(B^{0} \rightarrow f_{C P}, t\right) \propto\left|\left\langle f_{C P}\right| H\right| B_{\text {phys }}^{0}(t)\right\rangle\left.\right|^{2}$
Decay amplitudes vs time:

$$
\begin{aligned}
& \left\langle f_{C P}\right| H\left|B_{p h y s}^{0}(t)\right\rangle=g_{+}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}} \\
& \left\langle f_{C P}\right| H\left|\bar{B}_{p h y s}^{0}(t)\right\rangle=(p / q) g_{-}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+g_{+}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}= \\
& =\frac{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}-\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}+\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}= \\
& =\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}} \quad \lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}} \\
& =C \cos (\Delta m t)+S \sin (\Delta m t) \\
& \quad \begin{array}{l}
\text { Non-zero effect if Im }(\lambda) \neq 0, \\
\\
\text { even if }|\lambda|=1
\end{array}
\end{aligned}
$$

$$
\text { If }|\lambda|=1 \rightarrow a_{f_{C P}}=-\operatorname{Im}(\lambda) \sin (\Delta m t)
$$

CP violation in the interference between decays with and without mixing

One more form for λ :

$$
\lambda_{f C P}=\frac{q}{p} \frac{\bar{A}_{f_{C P}}}{A_{f_{C P}}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

\rightarrow we get one more (-1) sign when comparing asymmetries in two states with opposite CP parity

$$
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)
$$

B and anti-B from the $\mathrm{Y}(4 \mathrm{~s})$

B and anti- B from the $Y(4 s)$ decay are in a $L=1$ state.
They cannot mix independently (either BB or anti-B anti-B states are forbidden with $L=1$ due to Bose symmetry).

After one of them decays, the other evolves independently ->
-> only time differences between one and the other decay matter (for mixing).

Assume
-one decays to a CP eigenstate $f_{C P}\left(\right.$ e.g. $\pi \pi$ or $\left.J / \psi K_{S}\right)$ at time $t_{f C P}$ and
-the other at $\mathrm{t}_{\text {ftag }}$ to a flavor-specific state $\mathrm{f}_{\text {tag }}$ (=state only accessible to a B^{0} and not to a anti- B^{0} (or vice versa), e.g. $B^{0}->D^{0} \pi, D^{0}->K^{-} \pi^{+}$)
also known as 'tag' because it tags the flavour of the B meson it comes from

Decay rate to f_{CP}

Incoherent production
(e.g. hadron collider)

coherent production

$$
\text { at } Y(4 s)
$$

At $\mathrm{Y}(4 \mathrm{~s})$: Time integrated asymmetry $=0$

CP violation in SM

CP violation: consequence of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

CKM matrix

Transitions between members of the same family more probable (=thicker lines) than others
\rightarrow CKM: almost a diagonal matrix, but not completely

\rightarrow CKM: almost real, but not completely!

CKM matrix

Almost a real diagonal matrix, but not completely \rightarrow
Wolfenstein parametrisation: expand in the parameter
$\lambda\left(=\sin \theta_{c}=0.22\right)$
A, ρ and η : all of order one

$$
V=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
$$

Unitary relations

Rows and columns of the V matrix are orthogonal
Three examples: $1^{\text {st }}+2^{\text {nd }}, 2^{\text {nd }}+3^{\text {rd }}, 1^{\text {st }}+3^{\text {rd }}$ columns

$$
\begin{aligned}
& V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}=0, \\
& V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0, \\
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 .
\end{aligned}
$$

Geometrical representation: triangles in the complex plane.

Unitary triangles
$V_{u d} V_{u s}{ }^{*}+V_{c d} V_{c s}{ }^{*}+V_{t d} V_{t s}^{*}=0$,
$V_{u s} V_{u b}{ }^{*}+V_{c s} V_{c b}{ }^{*}+V_{t s} V_{t b}{ }^{*}=0$,
$V_{u d} V_{u b}{ }^{*}+V_{c d} V_{c b}{ }^{*}+V_{t d} V_{t b}^{*}=0$.

All triangles have the same area $\mathrm{J} / 2$ (about 4×10^{-5})

$$
J=c_{12} c_{23} c_{13}^{2} S_{12} S_{23} S_{13} \sin \delta
$$

Jarlskog invariant

Unitarity triangle

THE unitarity triangle:

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

(a)

$$
\begin{aligned}
& \alpha \equiv \phi_{2} \equiv \arg \left(\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}{ }^{*}}\right) \\
& \beta \equiv \phi_{1} \equiv \arg \left(\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right) \\
& \gamma \equiv \phi_{3} \equiv \arg \left(\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right) \equiv \pi-\alpha-\beta
\end{aligned}
$$

b decays

Decay asymmetry predictions - example $\pi^{+} \pi^{-}$

N.B.: for simplicity we have neglected possible penguin amplitudes (which is wrong as we shall see later, when we will do it properly).

A reminder:

$$
\begin{aligned}
& \frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}} \\
& \Delta m_{B}=2\left|M_{12}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \Delta m \propto
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\left|V_{t b}^{*} V_{t d}\right|^{2} m_{t}^{2} & \propto \lambda^{6} m_{t}^{2} \\
\left|V_{c b}^{*} V_{c d}\right|^{2} m_{c}^{2} & \propto \lambda^{6} m_{c}^{2}
\end{aligned}
\end{aligned}
$$

Decay asymmetry predictions - example $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$

$\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c} s}:$ Take into account that we measure the $\pi^{+} \pi^{-}$ component of $K_{s}-a 1$ so need the $(q / p)_{k}$ for the K system

$$
\begin{aligned}
& \lambda_{\mu / K \mathrm{~s}}=\eta_{\psi K \cdot} \cdot \frac{\left(\frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}{ }^{*}}\right)\left(\frac{V_{c s}^{*} V_{c b}}{V_{c s} V_{c b}{ }^{*}}\right)\left(\frac{V_{c d}{ }^{*} V_{c s}}{V_{c d} V_{c s}^{*}}\right)}{(\mathrm{p})_{\mathrm{B}}}= \\
& =\eta_{\psi K \mathrm{Ks}}\left(\frac{V_{t b}{ }^{*} V_{t d}}{V_{t b} V_{t d}{ }^{*}}\right)\left(\frac{V_{c b}}{V_{c b}{ }^{*}} \frac{V_{c d}{ }^{*}}{V_{c d}}\right) \\
& \operatorname{Im}\left(\lambda_{\psi K \mathrm{~S}}\right)=\sin 2 \phi_{1} \\
& \beta \equiv \phi_{1} \equiv \arg \left(\frac{V_{c d} V_{c b}{ }^{*}}{V_{t d} V_{t b}{ }^{*}}\right)
\end{aligned}
$$

$b \rightarrow c$ anti-c s $C P=+1$ and $C P=-1$ eigenstates

$a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)$

Asymmetry sign depends on the CP parity of the final state $f_{\text {Cpr }} \eta_{\text {fcp }}=+-1$

$$
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

$\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right): \mathrm{CP}=-1$
$\bullet \mathrm{J} / \psi: \mathrm{P}=-1, \mathrm{C}=-1$ (vector particle $\mathrm{J}^{\mathrm{PC}}=1^{--}$): $\mathrm{CP}=+1$
$\bullet \mathrm{K}_{\mathrm{S}}\left(->\pi^{+} \pi^{-}\right)$: $\mathrm{CP}=+1$, orbital ang. momentum of pions=0 ->

$$
\mathrm{P}\left(\pi^{+} \pi^{-}\right)=\left(\pi^{-} \pi^{+}\right), \mathrm{C}\left(\pi^{-} \pi^{+}\right)=\left(\pi^{+} \pi^{-}\right)
$$

\bullet - orbital ang. momentum between J / ψ and $\mathrm{K}_{\mathrm{S}} \mathrm{L}=1, \mathrm{P}=(-1)^{1}=-1$

$$
\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}(3 \pi): \mathrm{CP}=+1
$$

Opposite parity to $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right)$, because $\mathrm{K}_{\mathrm{L}}(3 \pi)$ has $\mathrm{CP}=-1$

How to measure CP violation?

Principle of measurement
Experimental considerations
Choice of boost
Spectrometer design
Babar and Belle spectrometers

Principle of measurement

Principle of measurement:
-Produce pairs of B mesons, moving in the lab system
-Find events with B meson decay of a certain type (usually $B->f_{C P}$ CP eigenstate)
-Measure time difference between this decay and the decay of the associated $B\left(f_{\text {tag }}\right)$ (from the flight path difference)
-Determine the flavour of the associated B (B or anti- B)
-Measure the asymmetry in time evolution for B and anti-B

Restrict for the time being to B meson production at $\mathrm{Y}(4 \mathrm{~s})$

B meson production at $Y(4 s)$

Principle of measurement

Experimental considerations

What kind of vertex resolution do we need to measure the asymmetry?

$$
P\left(B^{0}\left(\bar{B}^{0}\right) \rightarrow f_{C P}, t\right)=e^{-\Gamma t}\left(1 \mp \sin \left(2 \phi_{1}\right) \sin (\Delta m t)\right)
$$

Want to distinguish the decay rate of B (dotted) from the decay rate of anti-B (full).
-> the two curves should not be smeared too much

Integrals are equal, time information mandatory! (true at $Y(4 s)$, but not for incoherent production)

Experimental considerations

B decay rate vs t for different vertex resolutions $\sigma(z)$ in units of typical \mathbf{B} flight length $\beta \gamma \tau \mathrm{C}$

$\sigma(z) / \beta \gamma \tau \mathrm{C}=1$
$\sigma(\mathrm{z}) / \beta \gamma \tau \mathrm{C}=2$
1.6

-4
2
0.4

Experimental considerations

Error on $\sin 2 \phi_{1}=\sin 2 \beta$ as function of vertex resolution in units of typical B flight length $\sigma(z) / \beta \gamma \tau \mathrm{C}$
for 1000 events

Experimental considerations

Choice of boost $\beta \gamma$:
Vertex resolution vs. path length
Typical B flight length: $z_{B}=\beta \gamma \tau \mathrm{C}$
Typical two-body topology: decay products at 90° in cms; at $\theta(\beta \gamma)=\operatorname{atan}(1 / \beta \gamma)$ in the lab
Assume: vertex resolution determined entirely by multiple scattering in the first detector layer and beam pipe wall at r_{0}

$$
\begin{aligned}
& \sigma_{\theta}=15 \mathrm{MeV} / \mathrm{p} \sqrt{ }\left(\mathrm{~d} / \sin \theta X_{0}\right) \\
& \sigma(z)=r_{0} \sigma_{\theta} / \sin ^{2} \theta \\
& \square \sigma(z) \alpha r_{0} / \sin ^{5 / 2} \theta
\end{aligned}
$$

Experimental considerations

Choice of boost $\beta \gamma$:
Optimize ration of typical B

$$
\beta \gamma \tau c / \sigma(z)
$$

flight length to the vertex resolution
$\beta \gamma \tau c / \sigma(z) \alpha \beta \gamma \sin ^{5 / 2} \theta(\beta \gamma)$

Boost around $\beta \gamma=0.8$ seems optimal

However....

Experimental considerations

Which boost...
Arguments for a smaller boost:

- Larger boost -> smaller acceptance
- Larger boost -> it becomes hard to damp the betatron oscillations of the low energy beam: less synchrotron radiation at fixed ring radius (same as the high energy beam)

Figure 4. The acceptance of a detector covering $\left|\cos \theta_{l a b}\right|<0.95$ for five uncorrelated particles as a function of the energy of the more energetic beam in an asymmetric collider at the $\Upsilon(4 \mathrm{~S})$.

Experimental considerations

Detector form: symmetric for symmetric energy beams; slightly extended in the boost direction for an asymmetric collider.

How many events?

Rough estimate:
Need ~ 1000 reconstructed B-> J $/ \psi \mathrm{K}_{\mathrm{S}}$ decays with $\mathrm{J} / \psi->$ ee or $\mu \mu$, and $\mathrm{K}_{S^{-}}>\pi^{+} \pi^{-}$
$1 / 2$ of $Y(4 s)$ decays are B^{0} anti- B^{0} (but 2 per decay)
$B R\left(B->J / \psi K^{0}\right)=8.410^{-4}$
$\operatorname{BR}(\mathrm{J} / \psi->$ ee or $\mu \mu)=11.8 \%$
$1 / 2$ of K^{0} are $K_{S}, B R\left(K_{S}->\pi^{+} \pi^{-}\right)=69 \%$

Reconstruction effiency ~ 0.2 (signal side: 4 tracks, vertex, tag side pid and vertex)

$$
\begin{aligned}
\mathrm{N}(\mathrm{Y}(4 \mathrm{~s})) & =1000 /(1 / 2 * 2 * 8.410-4 * 0.118 * 1 / 2 * 0.69 * 0.2)= \\
& =140 \mathrm{M}
\end{aligned}
$$

How to produce 140 M BB pairs?

Want to produce 140 M pairs in two years
Assume effective time available for running is $10^{7} \mathrm{~s}$ per year.
\rightarrow need a rate of $14010^{6} /\left(210^{7} \mathrm{~s}\right)=7 \mathrm{~Hz}$
Observed rate of events $=$ Cross section \times Luminosity

$$
\frac{d N}{d t}=L \sigma
$$

Cross section for $\mathrm{Y}(4 \mathrm{~s})$ production: $1.1 \mathrm{nb}=1.110^{-33} \mathrm{~cm}^{2}$
\rightarrow Accelerator figure of merit - luminosity - has to be

$$
L=6.5 / \mathrm{nb} / \mathrm{s}=6.510^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

This is much more than any other accelerator achieved before!

Colliders：asymmetric B factories

Be11e $p\left(e^{-}\right)=8 \mathrm{GeV} p\left(\mathrm{e}^{+}\right)=3.5 \mathrm{GeV}$

Accelerator performance

$\rightarrow 1182 / \mathrm{pb} /$ day

Peter Križan, Ljubljana

Interaction region: BaBar

Head-on collisions

ıjjana

Interaction region: Belle

Collisions at a finite angle +-11mrad
KEKB Interaction Region

Belle spectrometer at KEK-B

BaBar spectrometer at PEP-II

Silicon vertex detector (SVD)

4 layers

covering polar angle from 17 to 150 degrees

Flavour tagging

Was it a B or an anti- B that decayed to the CP eigenstate?

Look at the decay products of the associated B

- Charge of high momentum lepton

Flavour tagging

Was it a B or anti-B that decayed to the CP eigenstate?
Look at the decay products of the associated B

- Charge of high momentum lepton
- Charge of kaon
- Charge of 'slow pion' (from $D^{*+} \rightarrow D^{0} \pi^{+}$and $D^{*-} \rightarrow D^{0} \pi^{-}$ decays)
-

Charge measured from curvature in magnetic field,
\rightarrow need reliable particle identification

Tracking: BaBar drift chamber

40 layers of wires (7104 cells) in 1.5 Tesla magnetic field Helium:Isobutane 80:20 gas, Al field wires, Beryllium inner wall, and all readout electronics mounted on rear endplate

Particle identification from ionization loss (7\% resolution)

Identification

Hadrons ($\pi, \mathrm{K}, \mathrm{p}$):

- Time-of-flight (TOF)
- $\mathrm{dE} / \mathrm{dx}$ in a large drift chamber
- Cherenkov counters
K_{L} : chambers in the instrumented magnet yoke

Electrons: electromagnetic calorimeter

Muon: chambers in the instrumented magnet yoke

PID coverage of kaon/pion spectra

PID coverage of kaon/pion spectra

Tagging Kaons

$B \rightarrow$ DK

Peter Križan, Ljubljana

Cherenkov counters

Essential part of particle identification systems.
Cherenkov relation: $\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=\mathbf{c} / \mathbf{n v}=\mathbf{1} / \beta \mathbf{n}$

Threshold counters \rightarrow count photons to separate particles below and above threshold; for $\beta<\beta_{\mathrm{t}}=1 / \mathrm{n}$ (below threshold) no Čerenkov light is emitted

Ring Imaging (RICH) counter \rightarrow measure Čerenkov angle and count photons

Belle ACC (aerogel Cherenkov counter): threshold Cerenkov counter

K (below thr.) vs. π (above thr.): adjust n

Detector unit: a block of aerogel and two fine-mesh PMTs

measured for $2 \mathrm{GeV}<\mathrm{p}<3.5 \mathrm{GeV}$ expected, measured ph. yield

Belle ACC (aerogel Cherenkov counter): threshold Cherenkov counter

K (below thr.) vs. π (above thr.): adjust n for a given angle kinematic region (more energetic particles fly in the 'forward region')

Peter Križan, Ljubljana

DIRC: Detector of Internally Reflected Cherekov photons

Use Cherenkov relation $\cos \theta=c / n v=1 / \beta n$ to determine velocity from angle of emission

DIRC: a special kind of RICH (Ring Imaging Cherenkov counter) where Čerenkov photons trapped in a solid radiator (e.q. quartz) are propagated along the radiator bar to the side, and detected as they exit and traverse a gap.

[^0]
DIRC event

Babar DIRC: a Bhabha event $\mathrm{e}^{+} \mathrm{e}^{-}-->\mathrm{e}^{+} \mathrm{e}^{-}$

DIRC performance

To check the performance, use kinematically selected decays:
$\mathrm{D}^{*+} \rightarrow \pi^{+} \mathrm{D}^{0}, \mathrm{D}^{0}->\mathrm{K}^{-} \pi^{+}$

Muon and K_{L} detector

Separate muons from hadrons (pions and kaons): exploit the fact that muons interact only e.m., while hadrons interact strongly \rightarrow need a few interaction lengths (about 10x radiation length in iron, 20x in CsI)

Detect K_{L} interaction (cluster): again need a few interaction lengths.

Some numbers: 3.9 interaction lengths (iron) +0.8 interaction length (CsI) Interaction length: iron $132 \mathrm{~g} / \mathrm{cm}^{2}$, CsI $167 \mathrm{~g} / \mathrm{cm}^{2}$
$(\mathrm{dE} / \mathrm{dx})_{\min }$: iron $1.45 \mathrm{MeV} /\left(\mathrm{g} / \mathrm{cm}^{2}\right)$, CsI $1.24 \mathrm{MeV} /\left(\mathrm{g} / \mathrm{cm}^{2}\right)$
$\rightarrow \Delta \mathrm{E}_{\text {min }}=(0.36+0.11) \mathrm{GeV}=0.47 \mathrm{GeV} \rightarrow$ reliable identification of muon above ~600 MeV

Muon and K_{L} detector

Up to 21 layers of resistiveplate chambers (RPCs) between iron plates of flux return

Bakelite RPCs at BABAR
(problems with aging)
Glass RPCs at Belle

Muon and K_{L} detector

Example:

event with
-two muons and a

- ${ }_{\mathrm{L}}$
and a pion that partly penetrated into the muon chamber system

Muon and K_{L} detector performance

Muon and K_{L} detector performance

K_{L} detection: resolution in direction
K_{L} detection: also with possible with electromagnetic calorimeter (0.8 interactin lengths)

Fig. 107. Difference between the neutral cluster and the direction of missing momentum in KLM.

How to measure $\sin 2 \phi_{1}$?

To measure $\sin 2 \phi_{1}$, we have to measure the time dependent CP asymmetry in $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}_{\mathrm{s}}$ decays

$$
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)=\sin 2 \phi_{1} \sin (\Delta m t)
$$

$$
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

In addition to $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}_{\mathrm{s}}$ decays we can also use decays with any other charmonium state instead of J / Ψ. Instead of K_{s} we can use channels with K_{L} (opposite CP parity).

Reconstructing chamonium states

Reconstructing final states X which decayed to several particles (x, y, z):
From the measured tracks calculate the invariant mass of the system $(i=x, y, z)$:

$$
M=\sqrt{\left(\sum E_{i}\right)^{2}-\left(\sum \vec{p}_{i}\right)^{2}}
$$

The candidates for the X ->xyz decay show up as a peak in the distribution on (mostly combinatorial) background.
The name of the game: have as little background under the peak as possible without loosing the events in the peak (=reduce background and have a small peak width).

A golden channel event

$$
\begin{aligned}
& \text { E. Expra Run } 272 \text { Farm } 5 \text { Event } 1088 \\
& \text { B■- - - } \quad \begin{array}{l}
\text { Eher } 8.00 \text { Eler } 3.50 \text { Tue Nov } 1623 z 12 z 081999 \\
\text { TrgID } 0 \text { DetVer } 0 \mathrm{MaglD} 0 \text { BField } 1.50 \text { DspVer } 5.10
\end{array} \\
& \text { Ptot(ch) 11.0 Etot(gm) 0.2 SVD-M O CDC-M O KLM-M O }
\end{aligned}
$$

Reconstructing chamonium states

Reconstructing $\mathrm{K}^{0}{ }_{\mathrm{S}}$

$$
\begin{gathered}
K_{S} \rightarrow \pi^{+} \pi^{-} \\
\sigma_{M}=4.1 \mathrm{GeV} / \mathrm{c}^{2}
\end{gathered}
$$

$K_{S} \rightarrow \pi^{0} \pi^{0}$
$\sigma_{M}=9.3 \mathrm{GeV} / \mathrm{c}^{2}$

Reconstruction of rare B meson decays

Reconstructing rare B meson decays at $\mathrm{Y}(4 \mathrm{~s})$: use two variables, beam constrained mass \mathbf{M}_{bc} and energy diference DE

$$
\begin{aligned}
& \Delta \boldsymbol{E} \equiv \sum \boldsymbol{E}_{\boldsymbol{i}}-\boldsymbol{E}_{C M} / 2 \\
& M_{b c}=\sqrt{\left(E_{C M} / 2\right)^{2}-\left(\sum \vec{p}_{i}\right)^{2}}
\end{aligned}
$$

\measuredangle

Continuum suppression

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow q q$ "continuum" ($\sim 3 \mathrm{xBB}$)

To suppress: use event shape variables

Reconstruction of b-> c anti-c s

$C P=-1$ eigenstates

$J / \Psi\left(\Psi, \chi_{\mathrm{c} 1}, \eta_{\mathrm{c}}\right) \mathrm{K}_{\mathrm{s}}\left(\mathrm{K}^{* 0}\right)$ sample $\left(\eta_{\mathrm{f}}=-1\right)$
from 88(85) $\times 10^{6} \mathrm{~B} \overline{\mathrm{~B}}$
BaBar 2002 result

Principle of CPV Measurement

Final result

CP is violated! Red points differ from blue.

Red points: anti- $B^{0}->f_{C P}$ with $C P=-1$ (or $B^{0}->f_{C P}$ with $C P=+1$)

Blue points: $B^{0}->f_{C P}$ with $C P=-1$ (or anti- $\mathrm{B}^{0}->\mathrm{f}_{\mathrm{CP}}$ with $\mathrm{CP}=+1$)

Belle, 2002 statistics (78/fb, 85M B B pairs)

Fitting the asymmetry

Fitting function:

$$
\begin{aligned}
& P_{\text {sig }}(\Delta t)=\frac{e^{-|\Delta t| / \tau}}{4 \tau}\left\{1+q\left(1-2 w_{l}\right) \operatorname{Im} \lambda \sin \Delta m t\right\} \otimes R(t) \\
& \text { iss-tagging probability } \quad \begin{array}{l}
\text { Resolution function: } \\
\text { from self-tagged events } \\
\mathrm{B} \rightarrow \mathrm{D}^{*} \mid v, \mathrm{D} \pi, \ldots
\end{array}
\end{aligned}
$$

$\mathrm{q}=+1$ or $=-1$ (B or anti-B on the tag side)

Fitting: unbinned maximum likelihood fit event-by-event Fitted parameter: Im(λ)

More data....

Larger sample \rightarrow

-smaller statistical error $(1 / \sqrt{ } \mathrm{N})$
-better understanding of the detector, calibration etc
\rightarrow error improves by better than with $1 / \sqrt{ } \mathrm{N}$

$b \rightarrow c$ anti-c s $C P=+1$ and $C P=-1$ eigenstates

$$
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)
$$

Asymmetry sign depends on the CP parity of the final state $f_{\text {CP }} \eta_{\text {fcp }}=+-1$

$$
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

$\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right): \mathrm{CP}=-1$
$\bullet J / \psi: P=-1, C=-1$ (vector particle $J^{\mathrm{PC}}=1^{-}$): $\mathrm{CP}=+1$
$\bullet K_{S}\left(->\pi^{+} \pi^{-}\right): C P=+1$, orbital ang. momentum of pions=0 -> $\mathrm{P}\left(\pi^{+} \pi^{-}\right)=\left(\pi^{-} \pi^{+}\right), \mathrm{C}\left(\pi^{-} \pi^{+}\right)=\left(\pi^{+} \pi^{-}\right)$
-orbital ang. momentum between J / ψ and $\mathrm{K}_{\mathrm{S}} \mathrm{I}=1, \mathrm{P}=(-1)^{1}=-1$

$$
\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}(3 \pi): \mathrm{CP}=+1
$$

Opposite parity to $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right)$, because $\mathrm{K}_{\mathrm{L}}(3 \pi)$ has $\mathrm{CP}=-1$

Reconstruction of b-> c anti-c s $C P=+1$ eigenstates

\rightarrow detection of K_{L} in KLM and ECL

- K_{L} direction, no energy

- $p^{*} \approx 0.35 \mathrm{GeV} / \mathrm{c}$ for signal events
- background shape is determined from MC, and its size from the fit to the data

Different CP \rightarrow sine wave with a flipped sign

CP violation in the B system

CP violation in B system: from the discovery in $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}_{\mathrm{s}}$ decays (2001) to a precision measurement (2006)
$\sin 2 \phi_{1}=\sin 2 \beta$ from $b \rightarrow c C S$

535 M BB pairs

$$
\sin 2 \phi_{1}=0.642 \pm 0.031 \text { (stat) } \pm 0.017 \text { (syst) }
$$

CP violation in the B system - history

Belle Collaboration, 98, 031802 (2007)
Belle Collaboration, Phys. Rev. Lett. D 77, 091103 (2008)
BaBar Collaboration, SLAC-PUB-13317, PRL 99, 171803 (2007)

How to measure $\phi_{2}(\alpha)$?

To measure $\sin 2 \phi_{2}$, we measure the time dependent CP asymmetry in $\mathrm{B}^{0} \rightarrow \pi \pi$ decays

$$
\begin{aligned}
& a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}= \\
& =\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}}
\end{aligned}
$$

In this case $\lambda \neq 1 \rightarrow$ much harder to extract ϕ_{2} from the CP violation measurement

Decay asymmetry calculation for $\mathrm{B} \rightarrow \pi^{+} \pi^{-}$ - tree diagram only

Neglected possible penguin amplitudes ->

$\pi^{+} \pi^{-}$- tree vs penguin

How much does the penguin contribute?
Compare $\mathrm{B} \rightarrow \mathrm{K}^{+} \pi^{-}$and $\mathrm{B} \rightarrow \pi^{+} \pi^{-}$

Diagrams for $\mathrm{B} \rightarrow \pi \pi, \mathrm{K} \pi$ decays

$\pi \pi$

-Penguin amplitudes (without CKM factors) expected to be equal in both.

- $\operatorname{BR}(\pi \pi)$ ~ $1 / 4 \operatorname{BR}(K \pi)$
$\cdot \mathrm{K} \pi$: penguin dominant \rightarrow penguin in $\pi \pi$ must be important

$\mathrm{B} \rightarrow \pi^{+} \pi^{-}$: results of the fit, plotted with background subtracted

CP asymmetry in time integrated rates

$$
a_{f}=\frac{\Gamma(B \rightarrow f)-\Gamma(\bar{B} \rightarrow \bar{f})}{\Gamma(B \rightarrow f)+\Gamma\left(\bar{B}^{-} \rightarrow \bar{f}\right)}=\frac{1-|\bar{A} / A|^{2}}{1+|\bar{A} / A|^{2}}
$$

Need $|\overline{A /} / A| \neq 1$: how do we get there?
In general, A is a sum of amplitudes with strong phases δ_{i} and weak phases ϕ_{i}. The amplitudes for anti-particles have the same

$$
\begin{aligned}
& A_{f}=\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)} \\
& \bar{A}_{\bar{f}}=\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}
\end{aligned}
$$ strong phases and opposite weak phases ->

$$
\begin{gathered}
\left|A_{f}\right|^{2}-\left|\bar{A}_{\bar{f}}\right|^{2}=\sum_{i, j} A_{i} A_{j} \sin \left(\varphi_{i}-\varphi_{j}\right) \sin \left(\delta_{i}-\delta_{j}\right) \\
\quad \rightarrow \text { Need at least two interfering amplitudes } \\
\text { with different weak and strong phases. }
\end{gathered}
$$

$\mathrm{B}->\pi^{+} \pi^{-}$: interpretation

Interpretation:

tree level

strong phase

 diff. P-T$$
\begin{aligned}
& \left.\lambda_{\pi \pi}=e^{2 i \phi_{2}} \quad \rightarrow \quad \lambda_{\pi \pi}=e^{2 i \phi_{2}} \frac{1+|P / T| e^{i \delta+i \phi_{3}}}{1+|P / T| e^{i \delta-i \phi_{3}}} \equiv \lambda_{\pi \pi} \right\rvert\, e^{2 i \phi_{2 e f f}} \\
& A_{\pi \pi}=0 \quad \rightarrow \quad A_{\pi \pi} \propto \sin \delta \\
& S_{\pi \pi}=\sin \left(2 \phi_{2}\right) \rightarrow S_{\pi \pi}=\sqrt{1-A_{\pi \pi}^{2}} \sin \left(2 \phi_{2 \text { eff }}\right) \\
& \phi_{2 \text { eff }} \text { depends on } \delta, \phi_{3}, \phi_{2} \text { and }|P / T| \\
& \pi=\phi_{1}+\phi_{2}+\phi_{3} \rightarrow \phi_{2 \text { eff }} \text { depends on } \delta, \phi_{1}, \phi_{2} \text { and }|P / T| \\
& \phi_{1} \text { : well measured }
\end{aligned}
$$

Extracting ϕ_{2} : isospin relations

$$
\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}, \pi^{0} \pi^{0}
$$

$$
B^{0}
$$

Constraint: relation of decay amplitudes in the $\operatorname{SU}(2)$ symmetry $\bar{A}^{+0}=1 / \sqrt{ } 2 \bar{A}^{+-}+\bar{A}^{00}$
$A^{-0}=1 / \sqrt{ } 2 A^{+-}+A^{00}$

- Inputs from:

$$
\begin{aligned}
& B^{0} \rightarrow \pi^{+} \pi^{-} \\
& B^{+} \rightarrow \pi^{+} \pi^{0} \\
& B^{0} \rightarrow \pi^{0} \pi^{0}
\end{aligned}
$$

How do I read plots like this?

- $1-\mathrm{CL}=1$: central value reported from measurements, before considering uncertainties.
- $1-\mathrm{CL}=0$: Region excluded by experiment.
- If we think in terms of Gaussian errors, then $1-C L=0.317,0.046$, 0.003 correspond to regions allowed at $1 \sigma, 2 \sigma$ and 3σ.

Gronau-London Isospin analysis

From: Adrian Bevan, slides at Helmholz International
Summer School, Dubna, Russia, August 11-21, 2008

Gronau-London Isospin analysis

How do I read plots like this?

- At $68.3 \% C L=1 \sigma$ for Gaussian errors we have the following allowed regions for α :

$$
\begin{aligned}
& \alpha<7.5^{\circ} \\
& 82.5<\alpha<103.1^{\circ} \\
& 118.0<\alpha<152.4^{\circ} \\
& \alpha>166.7^{\circ}
\end{aligned}
$$

From: Adrian Bevan, slides at Helmholz International
Summer School, Dubna, Russia, August 11-21, 2008

Extraction of ϕ_{2}

Use measured BRs and asymmetries in all three $\mathrm{B} \rightarrow \pi \pi$ decays \rightarrow extract ϕ_{2} Similar analysis also for $B \rightarrow \rho \rho$ $\left(\phi_{2}{ }^{\text {eff }}\right.$ closer to $\left.\phi_{2}\right)$
... and for $B \rightarrow \rho \pi$

By using SU(2)

$$
\phi_{2}=97.5^{\circ} \pm 6.2^{0} 5.30
$$

By using SU(3)

$$
\phi_{2}=89.8^{0} \pm{ }^{7.0^{0}} 6.40
$$

How to measure ϕ_{3} ?

No easy (=tree dominated) channel to measure ϕ_{3} through CP violation.

Any other idea? Yes.

(a)

$$
\gamma \equiv \phi_{3} \equiv \arg \left(\frac{V_{u d} V_{u b}{ }^{*}}{V_{c d} V_{c b}{ }^{*}}\right)
$$

ϕ_{3} from interference of a direct and colour suppressed decays

Basic idea: use $B^{-} \rightarrow K^{-} D^{0}$ and $B^{-} \rightarrow K^{-} \overline{D^{0}}$ with $D^{0}, \overline{D^{0}} \rightarrow f$ interference $\leftrightarrow \phi_{3}$
f: any final state, common to decays of both D^{0} and \bar{D}^{0}

$$
\mathrm{T} \sim \mathrm{~V}_{\mathrm{cb}} * \mathrm{~V}_{\mathrm{us}} \sim \mathrm{~A} \lambda^{3}
$$

$$
\mathrm{T}_{\mathrm{c}} \sim \mathrm{~V}_{\mathrm{ub}} \mathrm{~V}_{\mathrm{cs}} \sim \mathrm{~A} \lambda^{3}(\rho+\mathrm{i} \eta)
$$

$$
(\rho+i \eta) \sim e^{i \phi 3}
$$

ϕ_{3} from interference of a direct and colour suppressed decays

Gronau,London, Wy7er (GLW) 1991: $\mathrm{B}^{-} \rightarrow \mathrm{K}^{-} \mathrm{D}^{0}{ }_{\mathrm{CP}}$
Atwood, Dunietz,Soni (ADS) 2001: $B^{-} \rightarrow K^{-} D^{0(*)}\left[K^{+} \pi^{-}\right]$ Belle;Giri,zupan et al. (GGSZ), 2003: $\mathrm{B}^{-} \rightarrow \mathrm{K}^{-D^{0}(*)}\left[K_{\mathrm{s}} \pi^{+} \pi^{-}\right]$ Dalitz plot

Density of the Dalitz plot depends on ϕ_{3}
Matrix element:

$$
M_{+}=f\left(m_{+}^{2}, m_{-}^{2}\right)+r e^{i \phi_{3}+i \delta} f\left(m_{-}^{2}, m_{+}^{2}\right)
$$

Sensitivity depends on

$$
r=\sqrt{\frac{\operatorname{Br}\left(B^{-} \rightarrow \bar{D}^{(*)^{0}} K^{-}\right)}{\operatorname{Br}\left(B^{-} \rightarrow D^{(*)^{0}} K^{-}\right)}} \approx 0.1-0.3
$$

or any other common 3-body decay

What is a Dalitz plot?

Example: three body decay X->abc. M_{ij} denotes the invariant mass of the two-particle system (ij) in a three body decay. Kinematic boundaries: drawn for equal masses $m_{a}=m_{b}=m_{c}=0.14 \mathrm{GeV}$ and for two values of total energy E of the three-pion system. Resonance bands: drawn for states $(a b)$ and ($b c$) corresponding to a (fictitious) resonance with $\mathrm{M}=0.5 \mathrm{GeV}$ and $\mathrm{G}=0.2 \mathrm{GeV}$; dotdash lines show the locations a (ca) resonance band would have for this mass of 0.5 GeV , for the two values of
 the total energy E.
The pattern becomes much more complicated, if the resonances interfere.
Richard H. Dalitz, "Dalitz plot", in AccessScience@McGraw-Hill, http:/ /www.accessscience.com.

ϕ_{3} from interference of a direct and colour suppressed decay

Visible asymmetry

$$
\begin{gathered}
\gamma_{\text {Belle }}=\left(76_{-13 \text { stat }}^{+12} \pm 4_{\text {syst }} \pm 9_{\text {model }}\right)^{\circ} \\
\gamma_{\text {BaBar }}=\left(76_{-24 \text { stat }}^{+23} \pm 5_{\text {syst }} \pm 5_{\text {model }}\right)^{\circ}
\end{gathered}
$$

$\mathrm{r}_{\mathrm{B}}=0.16$ (Be11e), 0.09 (ваваг)

ϕ_{3} summary, all methods

Peter Križan, Ljubljana

Unitarity triangle: angles, summary

From: Adrian Bevan, slides at Helmholz International
Summer School, Dubna, Russia, August 11-21, 2008

Back-up slides

CP violation in decay

$$
\begin{aligned}
& \text { es in decay: }|\bar{A} / A| \neq 1 \\
& \quad \text { (and of course also }|\lambda| \neq 1) \\
& a_{f}=\frac{\Gamma\left(B^{+} \rightarrow f, t\right)-\Gamma\left(B^{-} \rightarrow \bar{f}, t\right)}{\Gamma\left(B^{+} \rightarrow f, t\right)+\Gamma\left(B^{-} \rightarrow \bar{f}, t\right)}= \\
& =\frac{1-|\bar{A} / A|^{2}}{1+|\bar{A} / A|^{2}}
\end{aligned}
$$

Also possible for the neutral B.

CP violation in decay

CPV in decay: $|\bar{A} / A| \neq 1$: how do we get there?

$$
\begin{aligned}
& A_{f}=\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)} \\
& \bar{A}_{\bar{f}}=\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}
\end{aligned}
$$

In general, A is a sum of amplitudes with strong phases δ_{i} and weak phases ϕ_{i}. The amplitudes for anti-particles have same strong phases and opposite weak phases ->

$$
\begin{aligned}
\left|\frac{\bar{A}_{\bar{f}}}{A_{f}}\right| & =\left|\frac{\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}}{\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)}}\right| \\
\left|A_{f}\right|^{2}-\left|\bar{A}_{\bar{f}}\right|^{2} & =\sum_{i, j} A_{i} A_{j} \sin \left(\varphi_{i}-\varphi_{j}\right) \sin \left(\delta_{i}-\delta_{j}\right)
\end{aligned}
$$

CPV in decay: need at least two interfering amplitudes with different weak and strong phases.

CP violation in mixing

SP in mixing: $|q / p| \neq 1$

$$
\text { (again }|\lambda| \neq 1)
$$

In general: probability for B to turn into an anti- B can differ from the probability for an anti-B to thum into a B.

$$
\begin{aligned}
& \left|B_{\text {phys }}^{0}(t)\right\rangle=g_{+}(t)\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left|\bar{B}^{0}\right\rangle \\
& \left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle=(p / \overparen{q}) g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Example: semileptonic decays:

$$
\begin{aligned}
\left\langle l^{-} \nu X\right| H\left|B_{\text {phys }}^{0}(t)\right\rangle & =(q / p) g_{-}(t) A^{*} \\
\left\langle l^{+} \nu X\right| H\left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle & =(p / q) g_{-}(t) A
\end{aligned}
$$

CP violation in mixing

$$
\begin{aligned}
& a_{s l}=\frac{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow l^{+} v X\right)-\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow l^{-} v X\right)}{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow l^{+} v X\right)+\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow l^{-} v X\right)}= \\
& =\frac{|p / q|^{2}-|q / p|^{2}}{|p / q|^{2}+|q / p|^{2}}=\frac{1-|q / p|^{4}}{1+|q / p|^{4}}
\end{aligned}
$$

-> Small, since to first order $|\mathrm{q} / \mathrm{p}| \sim 1$. Next order:

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}\left[1-\frac{1}{2} \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)\right]
$$

Expect $\mathrm{O}(0.01)$ effect in semileptonic decays

CP violation in the interference between decays with and without mixing

$$
\begin{aligned}
& a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}= \\
& =\frac{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}-\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}{\left|(p / q) g_{-}(t) A_{f_{c P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}+\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{c P}}\right|^{2}}= \\
& =\frac{\left|(p / q) i \sin (\Delta m t / 2) A_{f_{c P}}+\cos (\Delta m t / 2) \bar{A}_{f c p}\right|^{2}-\left|\cos (\Delta m t / 2) A_{f_{C P}}+(q / p) i \sin (\Delta m t / 2) \bar{A}_{f c P}\right|^{2}}{\left|(p / q) i \sin (\Delta m t / 2) A_{f_{C P}}+\cos (\Delta m t / 2) \bar{A}_{f_{C P}}\right|^{2}+\left|\cos (\Delta m t / 2) A_{f_{C P}}+(q / p) i \sin (\Delta m t / 2) \bar{A}_{f_{c P}}\right|^{2}}= \\
& =\frac{\left|(p / q)^{2} \lambda_{f_{C P}} i \sin (\Delta m t / 2)+\cos (\Delta m t / 2)\right|^{2}-\left|\cos (\Delta m t / 2)+\lambda_{f_{C P}} i \sin (\Delta m t / 2)\right|^{2}}{\left|(p / q)^{2} \lambda_{f C P} i \sin (\Delta m t / 2)+\cos (\Delta m t / 2)\right|^{2}+\left|\cos (\Delta m t / 2)+\lambda_{f_{C P}} i \sin (\Delta m t / 2)\right|^{2}}= \\
& =\frac{\left(1-\left|\lambda_{C C P}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}} \\
& =C \cos (\Delta m t)+S \sin (\Delta m t)
\end{aligned}
$$

Time evolution for B and anti-B from the $Y(4 s)$

The time evolution for the B anti-B pair from $Y(4 s)$ decay

$$
\begin{aligned}
& R\left(t_{t a g}, t_{f_{c P}}\right)=\left.e^{-\Gamma\left(t_{\text {tag }}+t_{\text {ccp }}\right.}\left|{\overline{A_{t a g}}}^{2}\right| A_{f_{c P}}\right|^{2} \\
& {\left[1+\left|\lambda_{f c p}\right|^{2}+\cos \left[\Delta m\left(t_{\text {tag }}-t_{f_{c P P}}\right)\right]\left(1-\left|\lambda_{f_{c P}}\right|^{2}\right)\right.} \\
& \left.-2 \sin \left(\Delta m\left(t_{t a g}-t_{f_{c P}}\right)\right) \operatorname{Im}\left(\lambda_{f_{c p}}\right)\right]
\end{aligned}
$$

$$
\text { with } \quad \lambda_{f c p}=\frac{q}{p} \frac{\bar{A}_{f c p}}{A_{f C P}}
$$

\rightarrow in asymmetry measurements at $Y(4 s)$ we have to use
$\mathrm{t}_{\text {faa }}-\mathrm{t}_{\text {fCP }}$ instead of absolute time t .

Identification with $\mathrm{dE} / \mathrm{dx}$ measurement

dE/dx performance in a large drift chamber.

Essential for hadron identification at low momenta.

Why penguin?

Example: $\mathrm{b} \rightarrow \mathrm{s}$ transition

Peter Križan, Ljubljana

$\mathrm{K}^{-} \pi^{+}$- tree vs penguin

Penguin amplitudes for $\mathrm{B} \rightarrow \mathrm{K}^{+} \pi^{-}$and $\mathrm{B} \rightarrow \pi^{+} \pi^{-}$are expected to be equal. Contribution to $\mathrm{A}(\mathrm{uus})$ in $\mathrm{K}^{+} \pi^{-}$ enhanced by λ in comparison to $\pi^{+} \pi^{-}$
$B \rightarrow K^{+} \pi^{-}$tree contribution suppressed by λ^{2} vs $\pi^{+} \pi^{-}$.
Experiment: $\mathrm{Br}\left(\mathrm{B} \rightarrow \mathrm{K}^{+} \pi^{-}\right)=1.8510^{-5}, \mathrm{Br}\left(\mathrm{B} \rightarrow \pi^{+} \pi^{-}\right)=0.4810^{-5}$
$\rightarrow \operatorname{Br}\left(\mathrm{B} \rightarrow \pi^{+} \pi^{-}\right) \sim 1 / 4 \operatorname{Br}\left(\mathrm{~B} \rightarrow \mathrm{~K}^{+} \pi^{-}\right) \rightarrow$ penguin contribution must be sizeable

$\mathrm{B}->\pi^{+} \pi^{-}$: interpretation

Interpretation:

tree level
tree +

$$
\begin{array}{lll}
\lambda_{\pi \pi}=e^{2 i \phi_{2}} & \rightarrow \quad \lambda_{\pi \pi}=e^{2 i \phi_{2}} \frac{\left.1+|P / T| e^{i \theta}\right)^{i P_{3}}}{1+|P / T| e^{i \delta-i \phi_{3}}} \equiv \equiv \begin{array}{l}
\lambda_{\pi \pi} \mid e^{2 i \phi_{2 e f f}} \\
A_{\pi \pi}=0 \quad
\end{array} \quad \rightarrow \quad A_{\pi \pi} \propto \sin \delta & \begin{array}{l}
\text { strong phase } \\
\text { iff. P-T } \\
\text { weak phase } \\
\text { (changes sign }
\end{array} \\
S_{\pi \pi}=\sin \left(2 \phi_{2}\right) \rightarrow \quad S_{\pi \pi}=\sqrt{1-A_{\pi \pi}^{2} \sin \left(2 \phi_{2 \text { eff }}\right)} \begin{array}{l}
\text { direct \&P }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& A(u \bar{u} d)=V_{c b} V_{c d}{ }^{*}\left(P_{d}^{c}-P_{d}^{t}\right)+V_{u b} V_{u d}{ }^{*}\left(T_{u \bar{d} d}+P_{d}^{u}-P_{d}^{t}\right)= \\
& =V_{u b} V_{u d}{ }^{*} T_{u \bar{d} d}\left[1+\left(P_{d}^{u}-P_{d}^{t}\right)+\left(V_{c b} V_{c d}{ }^{*} / V_{u b} V_{u d}{ }^{*}\right)\left(P_{d}^{e}-P_{d}^{t}\right)\right] \quad \gamma \equiv \phi_{3} \equiv \arg \left(\frac{V_{u d} V_{u b}{ }^{*}}{V_{c d} V_{c b}{ }^{*}}\right)
\end{aligned}
$$

How to extract ϕ_{2}, δ and $|\mathrm{P} / \mathrm{T}|$?

$\phi_{\text {2eff }}$ depends on $\delta, \phi_{3}, \phi_{2}$ and $|P / T|$

$$
\pi=\phi_{1}+\phi_{2}+\phi_{3} \rightarrow \phi_{2 \text { eff }} \text { depends on } \delta, \phi_{1}, \phi_{2} \text { and }|P / T|
$$

ϕ_{1} : we11 measured
penguin amplitudes $\mathrm{B} \rightarrow \mathrm{K}^{+} \pi^{-}$and $\mathrm{B} \rightarrow \pi^{+} \pi^{-}$are equal
\rightarrow limits on $|\mathrm{P} / \mathrm{T}|$ (~0.3);
considering the full interval of δ values one can obtain interval of ϕ_{2} values;
isospin relations can be used to constrain δ (or better to say $\phi_{2}-\phi_{\text {2eff }}$);

CKM matrix

3×3 ortogonal matrix: 3 parameters - angles
3×3 unitary matrix: 18 parameters, 9 conditions $=9$ free parameters, 3 angles and 6 phases

6 quarks: 5 relative phases can be transformed away (by redefinig the quark fields)

1 phase left -> the matrix is in general complex

$$
\begin{aligned}
& V_{C K M}=\left(\begin{array}{ccc}
c_{12} c_{13} & S_{12} c_{13} & S_{13} e^{-i \delta} \\
-s_{12} c_{13}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
S_{12} S_{23}-c_{12} c_{23} S_{13} e^{i \delta} & -c_{12} S_{23}-s_{12} c_{23} S_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right) \\
& \mathrm{s}_{12}=\sin \theta_{12}, \mathrm{c}_{12}=\cos \theta_{12} \text { etc. }
\end{aligned}
$$

[^0]: 4×1.225 m Bars
 glued end-to-end

