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summary

• Radio-Frequency Acceleration and Synchronism
• Properties of Radio-Frequency cavities
• Principle of Phase Stability and Consequences
• Synchronous linear accelerator
• The Synchrotron
• RF cavities for Synchrotron
• Energy-Phase Equations in a Synchrotron
• Phase space motions 
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Methods of Acceleration

1_ Electrostatic Field

Energy gain : W=n.e(V2-V1)

limitation         : Vgenerator =Σ Vi

2_ Radio-frequency Field

Synchronism : L=vT/2

v=particle velocity T= RF period
Wideroe structure

Electrostatic accelerator



The advantage of Resonant Cavities

- Considering RF acceleration, it is obvious that when particles get high 
velocities the drift spaces get longer and one loses on the efficiency. The 
solution consists of using a higher operating frequency.

- The power lost by radiation, due to circulating currents on the electrodes, 
is proportional to the RF frequency. The solution consists of enclosing the
system in a cavity which resonant frequency matches the RF generator 
frequency.

-Each such cavity can be independently 
powered from the RF generator.

- The electromagnetic power is now 
constrained in the resonant volume.

- Note however that joule losses will 
occur in the cavity walls (unless made 
of superconducting materials)
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The Pill Box Cavity
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From Maxwell’s equations one can derive 
the wave equations :

Solutions for E and H are oscillating modes, 
at discrete frequencies, of types TM or TE. 
For l<2a the most simple mode, TM010, has 
the lowest frequency ,and has only two field 
components:



The Pill Box Cavity (2)

The design of a pill-box cavity can 
be sophisticated in order to 
improve its performances:

-A nose cone can be introduced in 
order to concentrate the electric 
field around the axis,

-Round shaping of the corners 
allows a better distribution of the 
magnetic field on the surface and a 
reduction of the Joule losses. 

A good cavity is a cavity which 
efficiently transforms the RF 
power into accelerating voltage.



Transit Time Factor
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Oscillating field at frequency ω and which amplitude 
is assumed to be constant all along the gap:

Consider a particle passing through the middle of 
the gap at time t=0 :
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Transit Time Factor (2)
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Ψp is the phase of the particle entering the gap with respect to the RF.

and considering the phase which yields the 
maximum energy gain:

Consider the most general case and make use of complex notations:

Introducing:



Let’s consider a succession of accelerating gaps, operating in the 2π mode, 
for which the synchronism condition is fulfilled for a phase Φs .

For a 2π mode, 
the electric field 
is the same in all 
gaps at any given 
time.

sVeseV Φ= sinˆ is the energy gain in one gap for the particle to reach the next
gap with the same RF phase: P1 ,P2, …… are fixed points.

Principle of Phase Stability

If an increase in energy is transferred into an increase in velocity, M1 & N1 
will move towards P1(stable), while M2 & N2 will go away from P2 (unstable).



Transverse Instability
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The divergence of the field is
zero according to Maxwell : 000. >
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defocusing 
RF force

External focusing (solenoid, quadrupole) is then necessary

A Consequence of Phase Stability



The Traveling Wave Case
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where φ0 is the RF phase seen by the particle.



Multi-gaps Accelerating Structures:
A- Low Kinetic Energy Linac (protons,ions)

Mode π L= vT/2 Mode 2π L= vT = βλ

In « WIDEROE » structure radiated power ∝ ω CV
In order to reduce the 
radiated power the gap is 
enclosed in a resonant 
volume at the operating 
frequency. A common wall 
can be suppressed if no 
circulating current in it
for the chosen mode.ALVAREZ structure



CERN Proton Linac



The Synchrotron

The synchrotron is a synchronous accelerator since there is a synchronous RF 
phase for which the energy gain fits the increase of the magnetic field at each 
turn. That implies the following operating conditions:
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Synchronous particle
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Constant orbit

Variable magnetic field

If v = c, ωr hence ωRF remain constant (ultra-relativistic e- )



Energy ramping is simply obtained by varying the B field:
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•The number of stable synchronous particles is equal to the harmonic 
number h.  They are equally spaced along the circumference.
•Each synchronous particle satifies the relation p=eBρ. They have the 
nominal energy and follow the nominal trajectory.

The Synchrotron (2)
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The Synchrotron (3)
During the energy ramping, the RF frequency 
increases to follow the increase of the 
revolution frequency :

hence :  
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Since                                              ,  the RF frequency must follow the variation of the

B field with the law :                                           which asymptotically tends 

towards                   when B becomes large compare to  (m0c2 / 2πr) which corresponds to

v           c   (pc >> m0c2 ). In practice the  B field  can follow the law:
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Longitudinal Dynamics

It is also often called “ synchrotron motion”.

The RF acceleration process clearly emphasizes two coupled 
variables, the energy gained by the particle and the RF 
phase experienced by the same particle. Since there is a 
well defined synchronous particle which has always the same 
phase φs, and the nominal energy Es, it is sufficient to follow
other particles with respect to that particle. So let’s 
introduce the following reduced variables:

revolution frequency :             Δfr = fr – frs

particle RF phase     :              Δφ = φ - φs

particle momentum   :              Δp = p - ps

particle energy         :              ΔE = E – Es

azimuth angle            :              Δθ = θ - θs



First Energy-Phase Equation
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Second Energy-Phase Equation

The rate of energy gained by a particle is: π
ωφ 2sinˆ rVedt

dE=

The rate of relative energy gain with respect to the reference 
particle is then:
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Expanding the left hand side to first order:



Equations of Longitudinal Motion
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This second order equation is non linear. Moreover the parameters 
within the bracket are in general slowly varying with time…………………



Small Amplitude Oscillations
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Let’s assume constant parameters Rs, ps, ωs and η:
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Consider now small phase deviations from the reference particle:

and the corresponding linearized motion reduces to a harmonic oscillation:

stable for              and  Ωs real02>Ωs



Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference the 
second order differential equation is non-linear:
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Large Amplitude Oscillations (2)
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Second value φm where the separatrix crosses the horizontal axis:

Equation of the separatrix:

When φ reaches π-φs the force goes 
to zero and beyond it becomes non 
restoring. Hence π-φs is an extreme 
amplitude for a stable motion which 

in the phase space(            ) is shown 

as closed trajectories. 
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Energy Acceptance

From the equation of motion it is seen that    reaches an extremum
when        , hence corresponding to        .

Introducing this value into the equation of the separatrix gives:   
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That translates into an acceptance in energy:

This “RF acceptance” depends strongly on φs and plays an important role 
for the electron capture at injection, and the stored beam lifetime.
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RF Acceptance versus Synchronous Phase 

As the synchronous phase 
gets closer to 90º the 
area of stable motion 
(closed trajectories) gets 
smaller. These areas are 
often called “BUCKET”.

The number of circulating 
buckets is equal to “h”.

The phase extension of 
the bucket is maximum 
for φs =180º (or 0°) which 
correspond to no 
acceleration . The RF 
acceptance increases with 
the RF voltage.
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