

CP violation and related issues

Course at UB, May 2005
Part 15: Super B-factories
Peter Križan
University of Ljubljana and J. Stefan
Institute

Contents

Super B-factory motivation
Plans at KEK
New particle idetification device

IIII响IIII
 IITITIII
 Motivations for Super KEKB

1. Possible anomalies observed in B decays

- TCPV in $b \rightarrow s s s \neq b \rightarrow c c s: 3.8 \sigma$
- Polarization in penguin dominated $B \rightarrow V V$ decays
- $A_{\mathrm{CP}}\left(B^{ \pm} \rightarrow K^{ \pm} \pi^{0}\right) \neq A_{\mathrm{CP}}\left(B^{0} \rightarrow K^{ \pm} \pi\right.$ F

These MUST be clarified.

2. New physics will be found soon at LHC.

- Once New Physics is discovered and its mass scale is determined, next is to study its flavor structure and $C P$ violation, where B physics can play a unique role.

3. $e^{+} e^{-} B$ factory with $L=3.5 \times 10^{35}$ is competitive with LHCb.

- Head-on collision w/ Crab cavity

- Ante-chamber /solenoid for reduction of electron clouds

Baseline Design of SuperBelle

- Vertexing detector: "striplet" + APV25 or pixel
- Central drift chamber: small cell + faster gas
- PID device: TOP(B) + Aerogel RICH(E)
- EM calorimeter: Pure CsI + tetrode (E)
- Scintillator K_{L} and μ detector (KLM) <- no RPCs
- Pipelined DAQ
- Much bigger computing system

Proposed Schedule

improve K / π separation in the forward (high mom.) region for few-body decays of B's good K / π separation for $\mathrm{b}->\mathrm{d} \gamma, \mathrm{b}->\mathrm{s} \gamma$
improve purity in fully reconstructed B decays
low momentum ($<1 \mathrm{GeV} / \mathrm{c}$) e/ μ / π separation ($B->K I I$)
keep high the efficiency for tagging kaons

resolution and number of photons

Beam test results with 2 cm thick aerogel tiles:
$>4 \sigma \mathrm{~K} / \pi$ separation

(b) Number of hits

-> Number of photons has to be increased.

虚领 How to increase the number of photons?

What is the optimal radiator thickness?
Use beam test data on σ_{0} and N_{pe}

Minimize the error per track:

$\sigma=\sigma_{0} / \sqrt{ }\left(\mathbf{N}_{\text {pe }}\right)$
\longrightarrow Optimum is close to 2 cm

Aerogel production R\&D

- Colloidal formation

Aerogel production R\&D

Transmission length vs refractive index

Reported last year: better optical quality for $n \sim 1.05$ hydrophobic aerogel
a new solvent (Di-Methyl-Formamide instead of Methyl-alcohol)
precursor (Methyl-silicate-51) from a different supplier
-> considerable improvement

Development and testing of photon detectors for 1.5 T

- Has to work inside magnetic field of the spectrometer $=1.5 \mathrm{~T}$
- Baseline: large area HPD of the proximity focusing type
- Backup: MCP-PMT

 HPD development

$59 \mathrm{~mm} \times 59 \mathrm{~mm}$ active area (65\%), 12×12 channels

7897012345678920
Ceramic HPD box

First tests carried out. Problems with sealing the tube at the windowceramic box interface.

Waiting for the next batch in September.

IIITITIII
 Photon detector R\&D - one of the options: Burle MCP-PMT

BURLE 85011 MCP-PMT:
.multi-anode PMT with 2 MCPs $.25 \mu \mathrm{~m}$ pores
.bialkali photocathode
.gain ~ 0.6×10^{6}
.collection efficiency ~ 60\%
.box dimensions $\sim 71 \mathrm{~mm}$ square .64(8x8) anode pads
.pitch ~ 6.45 mm , gap $\sim 0.5 \mathrm{~mm}$
.active area fraction $\sim 52 \%$

$\xrightarrow{4}$
 …n
 Burle MCP PMT beam test

- BURLE MCP-PMT mounted together with an array of 12(6x2)

Hamamatsu R5900-M16 PMTs at 30 mm pitch (reference counter)

