

# CP violation and related issues 

## Part 11: FCNC decays

Peter Križan<br>University of Ljubljana and J. Stefan<br>Institute

## Contents

Radiative B decays
b->s $\mathrm{H}^{-1+}$ decays
Measurements of $\mathrm{A}_{\mathrm{FB}}$

## FCNC B decays

Flavour changing neutral current (FCNC) processes (like $\mathrm{b} \rightarrow \mathrm{s}, \mathrm{b} \rightarrow \mathrm{d}$ ) are fobidden at the tree level in the Standard Model. Proceed only at low rate via higherorder loop diagrams. Ideal place to search for new
physics.


May 17-25, 2005

## b $\boldsymbol{\rightarrow} \boldsymbol{s} \boldsymbol{\gamma}$ inclusive

$\mathbf{b} \rightarrow \mathbf{s} \gamma$ rate: sensitive to deviations from the SM, world average in good agreement with SM predictions.

Photon energy $\mathrm{E}_{\mathrm{g}}$ distribution: depends on $\mathrm{m}_{\mathrm{b}}$ and Fermi motion parameter in the B system (parameters of HQE); also important for the determination of $V_{u b}$ in semileptonic $B$ decays.

Previous measurement by CLEO: $\mathrm{E}_{\gamma}>2.0 \mathrm{GeV}$.
Belle: extend the energy range to $\mathrm{E}_{\gamma}>1.8 \mathrm{GeV}$ to cover $>95 \%$ of the rate.


## $\mathbf{b} \boldsymbol{\rightarrow} \boldsymbol{s} \gamma$ inclusive

- Consider all photons with $\mathrm{E}_{\gamma}>1.5 \mathrm{GeV}$
- Reject candidates compatible with $\pi^{0}, \eta \rightarrow \gamma \gamma$
- Apply stringent continuum cuts (event shape and energy flow variables)
- Subtract the remaining continuum component as determined with off-resonance data
- Other sources: inferred from data-corrected MC and subtracted
- Signal selection optimisation: maximize the significance in the $1.8 \mathrm{GeV}<\mathrm{E}_{\gamma}<1.9 \mathrm{GeV}$ interval data sample 140/fb


##  <br> 페Nun <br> b $\rightarrow$ sg inclusive

## Results

Branching ratio:

$$
B R(b \rightarrow s \gamma)=\left(3.55 \pm 0.32_{-0.31-0.07}^{+0.30+0.11}\right) \cdot 10^{-4}
$$

Photon energy $E_{\gamma}$ distribution:
first moment:
$\left\langle E_{\gamma}\right\rangle=(2.292 \pm 0.026 \pm 0.034) \mathrm{GeV}$
second moment: $<E_{\gamma}^{2}>-<E_{\gamma}^{2}=$
 $(0.0305 \pm 0.0074 \pm 0.0063)(\mathrm{GeV})^{2}$

Two moments: parameters of the shape function (SF).


## $\mathbf{C P}$ asymmetry in $\mathbf{B} \rightarrow \mathbf{X}_{\mathbf{s}} \gamma$

Inclusive measurement: pseudo-reconstruction of $\mathbf{B} \rightarrow \boldsymbol{X}_{\mathbf{s}} \gamma$.
 $\mathbf{K}^{+}\left(\pi^{+-}\right)$.
data sample 140/fb


Signal extraction: kinematic variable $\mathbf{M}_{\mathrm{bc}}=\sqrt{ }\left(\mathbf{E}^{* 2}{ }_{\text {beam }}-\left|\mathbf{p}_{\mathrm{B}}{ }_{\mathrm{B}}\right|^{\mathbf{2}}\right)$

## $\mathbf{C P}$ asymmetry in $\mathbf{B} \rightarrow \mathbf{X}_{\mathbf{s}} \gamma$

CP asymmetry

$$
A_{C P}=\left(\Gamma\left(\mathbf{b} \rightarrow \mathbf{s}_{\gamma}\right)-\Gamma(\overline{\mathbf{b}} \rightarrow \overline{\mathbf{s}} \gamma)\right) /\left(\Gamma\left(\mathbf{b} \rightarrow \mathbf{s}_{\gamma}\right)+\Gamma\left(\overline{\mathbf{b}} \rightarrow \overline{\mathbf{s}}_{\gamma}\right)\right)
$$

SM expectation +0.5\%

For events with $X_{s}<2.1 \mathrm{GeV} / c^{2}$
$A_{C P}=-0.002 \pm 0.050$ (stat) $\pm 0.030$ (syst)

$\mathrm{A}_{\mathrm{CP}}$ vs. $\mathrm{X}_{\mathrm{s}}$
a Peter Križan, Ljubljana

## $\mathbf{b} \rightarrow \mathbf{d} \gamma$ exclusive: $\mathbf{B} \rightarrow \rho \gamma, \omega \gamma$

Supressed by $\left(\mathrm{V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{ts}}\right)^{\mathbf{2}} \mathbf{v s} \mathbf{b} \rightarrow \mathbf{s} \gamma$
SM prediction for $\mathbf{B}^{+} \rightarrow \rho^{+} \gamma$
$B R$ around $1 \times 10^{-6}$
Not yet observed.


Potentially interesting:
Measurement of $V_{t d} / V_{t s}$
CP violation could be sizeable in SM (order 10\%)


Exclusive $\mathrm{B} \rightarrow \rho^{0} / \rho^{+} / \omega \gamma \quad\left(\rho^{0} \rightarrow \pi^{+} \pi^{-}, \rho^{+} \rightarrow \pi^{0} \pi^{+}, \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$ measurements on a data sample of $140 / \mathrm{fb}$

## $\mathbf{B G}: \mathbf{B} \rightarrow \mathbf{K}^{*} \gamma$ missid., $\mathbf{B} \rightarrow \rho / \omega \pi^{0}$, continuum

Continuum rejection: by Fisher event shape variable, vertexing, flavor-tag

Signal yield: Use 2-D unbinned maximum likelihood fit in two variables $\mathbf{M}_{\mathrm{bc}}=\sqrt{ }\left(\mathbf{E}^{* 2}{ }_{\text {beam }}-\left|\mathbf{p}_{\mathrm{B}}\right|^{\mathbf{2}}\right)$ and $\Delta \mathbf{E}=\mathbf{E}_{\mathrm{B}}^{*}-\mathbf{E}_{\text {beam }}^{*}$
Simultaneous fit to 3 signals $+2 K^{*} \gamma$ assuming isospin relations:

$$
\mathbf{B r}\left(\mathbf{B}^{+} \rightarrow \rho^{+} \gamma\right)=\mathbf{2}\left(\tau\left(\mathbf{B}^{+}\right) / \tau\left(\mathbf{B}^{0}\right)\right) \mathbf{B r}\left(\mathbf{B}^{0} \rightarrow \rho^{0} \gamma\right)=\mathbf{2}\left(\tau\left(\mathbf{B}^{+}\right) / \tau\left(\mathbf{B}^{0}\right)\right) \mathbf{B r}\left(\mathbf{B}^{0} \rightarrow \omega \gamma\right)
$$




- Photon candidates with $\pi^{0} / h$ veto
- $K^{*}(892)$ reconstructed in 4 final states:
$\mathrm{K}^{+} \pi^{-}, \mathrm{K}_{\mathrm{s}}^{0} \pi^{0}, \mathrm{~K}^{+} \pi^{0}, \mathrm{~K}_{\mathrm{s}} \pi^{+}$with |M(K $\left.\pi\right)-\mathbf{M}\left(\mathrm{K}^{*}\right)_{\mathrm{r}} \mathrm{l}<75 \mathrm{MeV} / \mathrm{c}^{2}$
- BKG suppression against $\mathbf{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{q q}(\gamma)$ by event shape var.


data sample 78/fb



$$
\mathbf{B} \rightarrow \mathbf{K}^{*} \mathbf{I}^{+} \mathbf{I}^{-}
$$


b $\rightarrow$ s $I^{+} l^{-}$was first measured in $B \rightarrow K I^{+} l^{-}$by Belle. With 140/fb of data, search for $\mathrm{K}^{*} \mathrm{I}^{+1-}$ and update $\mathrm{K} \mathrm{I}^{+}{ }^{-}$.

Important for further searches for the physics beyond SM: backward-forward asymmetry $\mathbf{A}_{\text {FB }}$ in K* I+I-
$\mathbf{B} \rightarrow \mathbf{K}^{*} \mathbf{I}^{+} \boldsymbol{I}^{-}$
$<2$
－ $\mathbf{K}^{*}: \mathbf{K}^{+} \pi^{-}, \mathbf{K}^{\mathbf{0}}{ }_{\mathrm{s}} \pi^{+}, \mathbf{K}^{+} \pi^{0}$ with $\left|\mathbf{M}(\mathbf{K} \pi)-\mathrm{M}\left(\mathbf{K}^{*}\right)\right|<75 \mathrm{MeV} / \mathrm{c}^{2}$
－K：charged or neutral
－Lepton pair：e or $\mathbf{m}, \mathrm{p}(\mathrm{e})>0.4 \mathrm{GeV} / \mathrm{c}, \mathrm{p}(\mu)>0.7 \mathrm{GeV} / \mathrm{c}$


## $B \rightarrow \mathbf{K}^{*} \mathbf{I}^{+} \mathbf{I}^{-}$

## Results based on $\mathbf{1 4 0} \mathbf{~ f b}^{\mathbf{- 1}}$

－ $\operatorname{BR}\left(B \rightarrow K^{*} I^{+} I^{-}\right)=\left(11.5_{-2.4}^{+2.6} \pm 0.8 \pm 0.2\right) 10^{-7}$ observation
－ $\operatorname{BR}\left(B \rightarrow \mathrm{~K} \mathrm{l}^{+} \mathrm{l}^{-}\right)=\left(4.8_{-0.9}^{+1.0} \pm 0.3 \pm 0.1\right) \mathbf{1 0}^{-7}$ update with more data

$q^{2}=M_{\|}{ }^{2} c^{2}$
yellow：SM expect．


## Results based on $123 \mathbf{~ f b}^{-1}$

- $\operatorname{BR}\left(B \rightarrow K^{*} I^{+} I^{-}\right)=\left(8.8_{-2.9}^{+3.9} \pm 1.0\right) 10^{-7}$
- $\operatorname{BR}\left(B \rightarrow \mathrm{~K} \mathrm{I}^{+} \mathrm{l}^{-}\right)=\left(6.5_{-1.3}^{+1.4} \pm 0.4\right) 10^{-7}$

Belle+BaBar: All in good agreement with SM.

With more statistics: measure backward-forward asymmetry $\mathrm{A}_{\mathrm{FB}}$ in $\mathrm{K}^{*} \mathrm{I}^{+1}->$ determine sign of $\mathrm{C}_{\mathbf{7}}$

## $\mathbf{A}_{\text {FB }}$ for $\mathbf{B} \rightarrow \mathbf{K}^{*}{ }^{*} \mathbf{I}^{+} \mathbf{I}^{-}$

- Raw $A_{F B}$ in each $q^{2}$ region is extracted from $\mathrm{Mbc}^{\mathrm{bc}}$ fit.
- Dotted lines indicate charmonium veto windows.
- KIl has no asymmetry, hence a good control sample.

- Curves (not fitted lines!) show theory including exp'tal efficiency.
- Both are in agreement with data.


- Long list of theoretical expectations for $A_{F B}$ VS S


