

CP violation and related issues

Part 3+4: Experiments

Peter Križan
 University of Ljubljana and J. Stefan Institute

Contents

Principle of measurement
Experimental considerations
Choice of boost
Spectrometer design
Babar and Belle spectrometers

Principle of measurement

Principle of measurement：
－Produce pairs of B mesons，moving in the lab system
－Find events with B meson decay of a certain type（usually $B->f_{C P}-$ CP eigenstate）
－Measure time difference between this decay and the decay of the associated B（ $f_{\text {tag }}$ ）（from the flight path difference）
－Determine the flavour of the associated B（ B or anti－B）
－Measure the asymmetry in time evolution for B and anti－B

Restrict for the time being to B meson production at $Y(4 s)$

 B meson production at $Y(4 s)$

Experimental considerations

What kind of vertex resolution do we need to measure the asymmetry?

$$
P\left(B^{0}\left(\bar{B}^{0}\right) \rightarrow f_{C P}, t\right)=e^{-\Gamma t}\left(1 \mp \sin \left(2 \phi_{1}\right) \sin (\Delta m t)\right)
$$

Want to distiguish the decay rate of B (dotted) from the decay rate of anti-B (full).
-> the two curves should not be smeared too much

Integrals are equal, time information mandatory! (at $\mathrm{Y}(4 \mathrm{~s})$, but not for incoherent production)

May 17-25, 2005 Course at University of Barcelona Peter Križan, Ljubljana

Experimental considerations

B decay rate vs t for different as vertex resolutions in units of typical B flight length $\sigma(\mathrm{z}) / \beta \gamma \tau \mathrm{C}$

Experimental considerations

Since there are no pure samples of B and B tags, what is really measured is the probability that the tagging B is a B or a anti- B.
Denote with x : variable between $-1(\operatorname{tag}=a n t i-B)$ and $+1(\operatorname{tag}=\mathrm{B})$ and the probability that the tag is wrong with $w(x)$
Probability density function for an event with t and x is

$$
f(t, x, A) d x d t=e^{-\Gamma t}[1+q(x) A \sin \Delta m t] n(x) d x d t
$$

with $A=C P$ asymmetry (e.g. $\sin 2 \phi_{1}$), $q(x)=1-2 w$
Taking into account the finite vertex resolution, we arrive at
$f\left(t, x, A, \sigma_{t}\right) d x d t=\left[\int \frac{1}{\sqrt{2 \pi \sigma_{t}}} e^{-\frac{1}{2}\left(\frac{1-t^{\prime}}{\sigma_{t}}\right)^{2}} e^{-\Gamma\left|\ell^{\prime}\right|}\left[1+q(x) A \sin \Delta m t^{\prime}\right] n(x) d t^{\prime}\right] d x d t$

Experimental considerations

This can be rewritten as

$$
\begin{gathered}
f(t, x, A, \sigma) d x d t=[E(t)+A q(x) S(t)] n(x) d x d t \\
E(t)=\int \frac{1}{\sqrt{2 \pi \sigma_{t}}} e^{-\frac{1}{2}\left(\frac{t-t^{\prime}}{\sigma_{t}}\right)^{2}} e^{-\Gamma\left|t^{\prime}\right|} d t^{\prime}, \\
S(t)=\int \frac{1}{\sqrt{2 \pi \sigma_{t}}} e^{-\frac{1}{2}\left(\frac{t-t^{\prime}}{\sigma_{t}}\right)^{2}} e^{-\Gamma\left|t^{\prime}\right|} \sin \Delta m t^{\prime} d t^{\prime} .
\end{gathered}
$$

Experimental considerations

The log-likelihood function is a sum over all reconstructed and tagged events

$$
\begin{aligned}
& \ln \mathcal{L}=\ln \prod_{i=1}^{N} f\left(t_{i}, x_{i}, A, \sigma_{t}\right)=\sum_{i=1}^{N} \ln f\left(t_{i}, x_{i}, A, \sigma_{t}\right) \\
& \ln \prod_{i=1}^{N} f\left(t_{i}, x_{i}, A, \sigma_{t}\right)=\sum_{i=1}^{N} \ln [(1+A q(x) S(t) / E(t)) E(t) n(x)] \\
&=\sum_{i=1}^{N} \ln (1+A q(x) S(t) / E(t))+C \\
& \longmapsto \ln \mathcal{L}^{\prime}=\sum_{i=1}^{N} \ln \left(1+A \frac{q S}{E}\right)
\end{aligned}
$$

Experimental considerations

Error on the asymmetry
parameter A can be evaluated

$$
\quad \frac{1}{\sigma_{A}^{2}}=N \int_{-1}^{1} \int_{-\infty}^{\infty} \frac{1}{f}\left(\frac{\partial f}{\partial A}\right)^{2} n(x) d t d x
$$

$$
\sigma_{A} \approx \frac{\sigma_{0}}{\sqrt{N} \sqrt{\left\langle q^{2}\right\rangle}}, \quad \quad \text { Use } \mathrm{f}\left(\mathrm{t}, \mathrm{x}, \mathrm{~A}, \sigma_{\mathrm{t}}\right) \text { to get } \sigma_{\mathrm{A}}
$$

$$
\left\langle q^{2}\right\rangle \equiv \int_{-1}^{1} q^{2}(x) n(x) d x
$$

$$
\sigma_{0} \equiv \frac{1}{\sqrt{\int_{-\infty}^{\infty} \frac{\left(\frac{S(t)}{E(t)}\right)^{2}}{\left[1+A \frac{S(t)}{E(t)}\right]} E(t) d t}}
$$

Experimental considerations

Final expression for the asymmetry error (error on $\sin 2 \phi_{1}$) as a function of vertex resolution and wrong tag probability
$\sigma_{A}\left(A, \Delta m / \Gamma, \sigma_{t}, N, w\right)=\frac{\sigma_{0}\left(A, \Delta m / \Gamma, \sigma_{t}\right)}{\sqrt{N} \sqrt{\epsilon}(1-2 w)}$
N : number of reconstructed events,
ε : tagging efficiency
w: wrong tag probability

Experimental considerations

Error on $\sin 2 \phi_{1}=\sin 2 \beta$ as function of vertex resolution in units of typical B flight length $\sigma(z) / \beta \gamma \tau \mathrm{C}$

For 1 event

for 1000 events

May 17-25, 2005

Experimental considerations

Choice of boost $\beta \gamma$:
Vertex resolution vs. path length
Typical B flight length: $z_{B}=\beta \gamma \tau C$
Typical two-body topology: decay products at 90° in cms; at $\theta=\operatorname{atan}(1 / \beta \gamma)$ in the lab
Assume: vertex resolution determined by multiple scattering in the first detector layer and beam pipe wall at r_{0}

$$
\begin{aligned}
& \sigma_{\theta}=15 \mathrm{MeV} / \mathrm{p} \sqrt{ }\left(\mathrm{~d} / \sin \theta \mathrm{X}_{0}\right) \\
& \sigma(\mathrm{z})=\mathrm{r}_{0} \sigma_{\theta} / \sin ^{2} \theta \\
& \Rightarrow \sigma(\mathrm{z}) \alpha r_{0} / \sin ^{5 / 2} \theta
\end{aligned}
$$

Experimental considerations

Choice of boost $\beta \gamma$:
Vertex resolution in units of typical B flight length

Boost around $\beta \gamma=0.8$ seems optimal

However....
$\beta \gamma \tau C / \sigma(z)$

Experimental considerations

Which boost...
Arguments for a smaller boost:

- Larger boost -> smaller acceptance ->
- Larger boost -> it becomes hard to damp the betatron oscillations of the low energy beam: less synchrotron radiation at fixed ring radius (same as the high energy beam)

Figure 4. The acceptance of a detector covering $\left|\cos \theta_{l a b}\right|<0.95$ for five uncorrelated particles as a function of the energy of the more energetic beam in an asymmetric collider at the $\Upsilon(4 \mathrm{~S})$.

Experimental considerations

Detector form: symmetric for symmetric energy beams; extended in the boost direction for an asymmetric collider.

How many events?

Rough estimate:
Need ~ 1000 reconstructed B-> J/ $\psi \mathrm{K}_{\mathrm{S}}$ decays with J/ ψ-> ee or $\mu \mu$, and $\mathrm{K}_{s^{-}}>\pi^{+} \pi^{-}$
$1 / 2$ of $Y(4 s)$ decays are B^{0} anti- B^{0} (but 2 per decay)
$\mathrm{BR}\left(\mathrm{B}->\mathrm{J} / \psi \mathrm{K}^{0}\right)=8.410^{-4}$
$\operatorname{BR}(\mathrm{J} / \psi->$ ee or $\mu \mu)=11.8 \%$
$1 / 2$ of K^{0} are $K_{S}, B R\left(K_{S^{-}}->\pi^{+} \pi^{-}\right)=69 \%$
Reconstruction effiency ~ 0.2 (signal side: 4 tracks, vertex, tag side pid and vertex)

$$
\begin{aligned}
N(Y(4 s)) & =1000 /\left(1 / 2 * \frac{1}{2} * 2 * 8.410^{-4} * 0.118 * 0.69 * 0.2\right)= \\
& =140 \mathrm{M}
\end{aligned}
$$

How to produce 140 M BB pairs?

Want to produce 140 M pairs in two years
Assume effective time available for running is $10^{7} \mathrm{~s}$ per year.
-> need a rate of 14010^{6} / (2 $10^{7} \mathrm{~s}$) $=7 \mathrm{~Hz}$
Observed rate of events $=$ Cross section \times Luminosity

$$
\frac{d N}{d t}=L \sigma
$$

Cross section for $\mathrm{Y}(4 \mathrm{~s})$ production: $1.1 \mathrm{nb}=1.110^{-33} \mathrm{~cm}^{2}$
-> Accelerator figure of merit luminosity has to be

$$
L=6.5 / \mathrm{nb} / \mathrm{s}=6.510^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

This is much more than any other any other accelerator achieved before!

Colliders: asymmetric B factories

Accelerator performace

Observed rate of events $=$ Cross section \times Luminosity

$$
\frac{d N}{d t}=L \sigma
$$

Accelerator figures of merit: luminosity L
and integrated luminosity

$$
L_{\mathrm{int}}=\int L(t) d t
$$

Records:

$$
\begin{aligned}
& \mathrm{L}_{\text {peak }}=15.81 / \mathrm{nb} / \mathrm{sec}(\text { May } 18,2005)\left(=1.58 \times 10^{34} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}\right) \\
& \mathrm{L}_{\text {int }}=434.355 / \mathrm{fb}(\text { May. 18, 2005 }) \\
& \sim 470 \text { М вв pairs }
\end{aligned}
$$

Flavour tagging

Was it a B or anti- B that decayed to the CP eigenstate?

Look at the decay products of the associated B

- Charge of high momentum lepton

Flavour tagging

Was it a B or anti-B that decayed to the CP eigenstate?
Look at the decay products of the associated B

- Charge of high momentum lepton
- Charge of kaon
- Charge of 'slow pion' (from $D^{*}->D \pi$ decay)
-

Charge measured from curvature in magnetic field, need reliable particle identification

Requirement: measure both

$b->c$ anti-c s CP=+1 and CP=-1 eigenstates

$$
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)
$$

Asymmetry sign depends on the CP parity of the final state $f_{\text {CP, }} \eta_{\text {fcp }}=+-1$

$$
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

$\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right): \mathrm{CP}=-1$
$\bullet \mathrm{J} / \psi: \mathrm{P}=-1, \mathrm{C}=-1$ (vector particle $\mathrm{JPC}^{\mathrm{P}}=1^{--}$): $\mathrm{CP}=+1$
$\bullet K_{S}\left(->\pi^{+} \pi^{-}\right): C P=+1$, orbital ang. momentum of pions=0 ->

$$
\mathrm{P}\left(\pi^{+} \pi^{-}\right)=\left(\pi^{-} \pi^{+}\right), \mathrm{C}\left(\pi^{-} \pi^{+}\right)=\left(\pi^{+} \pi^{-}\right)
$$

\bullet-rbital ang. momentum between J / ψ and $\mathrm{K}_{\mathrm{S}} \mathrm{I}=1, \mathrm{P}=(-1)^{1}=-1$
$\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}(3 \pi)$: $\mathrm{CP}=+1$
Opposite parity to $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right)$, because $\mathrm{K}_{\mathrm{L}}(3 \pi)$ has $\mathrm{CP}=-1$ -> need K_{L} detection

Tracking: Belle central drift chamber
-50 layers of wires (8400 cells) in 1.5 Tesla magnetic field
-Helium:Ethane 50:50 gas, Al field wires, CF inner wall with cathodes, and preamp only on endplates
-Particle identification from ionization loss (5.6-7\% resolution)

Identification

Hadrons（ $\pi, \mathrm{K}, \mathrm{p}$ ）：
－Time－of－flight（TOF）
－ $\mathrm{dE} / \mathrm{dx}$ in a large drift chamber
－Cherenkov counters

Electrons：electromagnetic calorimeter

Muon：muon chambers in the instrumented magnet yoke

Identification with $\mathrm{dE} / \mathrm{dx}$ measurement

$\mathrm{dE} / \mathrm{dx}$ performance in a large drift chamber.

Essential for hadron identification at low momenta.

Cherenkov counters

Essential part of particle identification systems.
Cherenkov relation: $\boldsymbol{\operatorname { c o s }} \theta=\mathbf{c} / \mathbf{n v}=\mathbf{1} / \beta \mathbf{n}$

Threshold counters --> count photons to separate particles below and above threshold; for $\beta<\beta_{\mathrm{t}}=1 / \mathrm{n}$ (below threshold) no Cerenkov light is emitted

Ring Imaging (RICH) --> measure Čerenkov angle and count photons

Use Cherenkov relation $\cos \theta=c / n v=1 / \beta n$ to determine velocity from angle of emission

DIRC: a special kind of RICH (Ring Imaging Cherenkov counter) where Čerenkov photons trapped in a solid radiator (e.q. quartz) are propagated along the radiator bar to the side, and detected as they exit and traverse a gap.

May 17-25, 2005
Course at University of Barcelona
Peter Križan, Ljubljana

Babar DIRC: a Bhabha event $\mathrm{e}^{+} \mathrm{e}^{-}-->\mathrm{e}^{+} \mathrm{e}^{-}$

To check the performance, use kinematically selected decays:
$D^{*+}->\pi^{+} D^{0}, D^{0}->K^{-} \pi^{+}$

Calorimetry Design

IIII吅iII
IITITIII

Requirements

-Best possible energy and position resolution: 11 photons per $\mathrm{Y}(4 \mathrm{~S})$ event; 50\% below 200 MeV in energy
-Acceptance down to lowest possible energies and over large solid angle
-Electron identification down to low momentum

Constraints

-Cost of raw materials and growth of crystals

- Operation inside magnetic field
-Background sensitivity

Implementation

Thallium-doped Cesium-Iodide crystals with 2 photodiodes per crystal Thin structural cage to minimize material between and in front of crystals

Muon and K_{L} detector

Up to 21 layers of resistiveplate chambers (RPCs) between iron plates of flux return

Muon identification >800 $\mathrm{MeV} / \mathrm{c}$
Neutral hadrons $\left(\mathrm{K}_{\mathrm{L}}\right)$ detection - also with electromagnetic calorimeter

Bakelite RPCs at BABAR
Glass RPCs at Belle

May 17-25, 2005 Course :

