

CP violation and related issues

Part 16: CKM matrix, summary and outlook

Peter Križan
University of Ljubljana and J. Stefan
Institute

Contents

Unitarity triangle revisited
CP violation - revisited
cosmological implications
How much CP is needed?
What comes next?

CP violation in SM

CP violation: consequence of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

Transitions between members of the same family more probable than others
-> CKM: almost a diagonal matrix, but not completely

CKM matrix

If $\mathrm{V}_{\mathrm{ij}}=\mathrm{V}_{\mathrm{ij}}{ }^{*} \triangleright \mathcal{L}=\mathcal{L}_{\mathrm{CP}} \triangleright \mathrm{CP}$ is conserved, otherwise not
3×3 unitary matrix: 3 real parameters and 1 phase
-> the matrix is in general complex

$$
V_{C K M}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{13}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

CKM matrix can accomodate the CP violation, and does it well!

Unitarity triangle

THE unitarity triangle：

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

（a）

CP violation measurements: the main tool to study the unitarity triangle

CP violation in the interference between mixing and decay to a state accessible in both B^{0} and anti- B^{0} decays

For example: a CP eigenstate f_{CP} like $\pi^{+} \pi^{-}$

$$
a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}=\quad \lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}
$$

$$
=\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}}
$$

$$
\text { If }|\lambda|=1->\quad a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)
$$

Angle $\beta\left(\phi_{1}\right)$ as $\sin 2 \phi_{1}$ from CP asymmetry measurement

Angle $\gamma\left(\phi_{3}\right)$ from Dalitz plot analysis of the interference of two decay channels

Visible asymmetry Fit with $\phi_{3}, \delta, r_{\text {в }}$ free

$$
\begin{aligned}
& \phi_{3}=\left(68 \pm{ }^{14}{ }_{15} \pm 13 \pm 11\right)^{\circ} \\
& 22^{\circ}<\phi_{3}<113^{\circ} @ 95 \% \text { C.L. } \\
& \mathrm{r}_{\mathrm{B}}=0.21 \pm 0.08 \pm 0.03 \pm 0.04
\end{aligned}
$$

New method: fully reconstruct one of the B mesons, check the properties of the other (semileptonic decay, low mass of the hadronic system)

- Very good signal to noise
-Low yield (full reconstruction efficiency is 0.3-0.4\%)
$\mathbf{M}_{\mathrm{x}}<1.7 \mathrm{GeV} / \mathrm{c}^{2} / \mathrm{q}^{2}>8 \mathrm{GeV}^{2} / \mathrm{c}^{2}$
Total error on $\left|\mathrm{V}_{u b}\right| \ldots . . .12 \%$

$253 \mathrm{fb}^{-1}$

Unitarity triangle with different sets of data

Tree level + CPC observables
$\Delta m_{B}, \Delta m_{B_{*}}$
Course at University of Barcelona

Δm_{B},
May 17-26, 2005 Peter Križan, Ljubljana

sets of data 2004

$s \rightarrow d$
$\varepsilon, \mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)$
-> CKM matrix can accomodate the CP violation, and does it very well!
... apart from some interesting hints...

CP violating process（Littenberg PRD 39 （1989）3322）．

In SM dominated by EW penguin and box diagrams．

Calculable with little theoretical uncertainties（for details see A． Buras，hep－ph／0101336）

$$
\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} \nu \bar{v}\right)=C A^{4} \eta^{2}
$$

$$
\begin{aligned}
& \text { 広定 } \\
& \text { imin|lII } \\
& \operatorname{Br}\left(K_{L} \rightarrow \pi^{0} \nu \bar{v}\right)=C A^{4} \eta^{2}
\end{aligned}
$$

$\mathrm{K}_{\mathrm{L}}^{0}->\pi^{0} v \nu$ decay
－＞measurement of this BR and of the related $\mathrm{K}^{+}->\pi^{+} v v$ decay could provide excellent constraints on the parameters η and ρ ，can also be used to extract $\sin 2 \beta$ ．

Experimentally very challenging：very rare decay（SM expectation 2.510^{-11} ）of the type＂nothing＂to＂nothing＂．

Measured $\operatorname{BR}\left(\mathrm{K}^{+}->\pi^{+} v v\right)=\left(1.6^{+1.8}{ }_{0.8}\right) 10^{-10}$ with 3 events．．．
Experiments：KOPIO（ $\mathrm{K}^{0}->\pi^{0} v v$ ），BNL787／949，CKM（ $\mathrm{K}^{+}->\pi^{+} v v$ ）

IIIT机
Initial condition of the universe $\mathrm{N}_{\mathrm{B}}-\mathrm{N}_{\mathrm{B}}=0$
Today our vicinity (at least up to ~ 10 Mpc)
is made of matter and not of anti-matter
$\underset{\text { (matter) }}{\substack{\text { nb. baryons }}} \longleftarrow \frac{N_{B}-N_{\bar{B}}}{N_{\gamma} \longrightarrow 10^{-10}-10^{-9}} \underset{ }{\text { Nb of photons }}$ (microwave backg)
In the early universe $\mathrm{B}+\overline{\mathrm{B}} \rightarrow \gamma \leftrightarrow \mathrm{N}_{\gamma}=\mathrm{N}_{\mathrm{B}}+\mathrm{N}_{\mathrm{B}}$
How did we get from

$\frac{N_{B}-N_{\bar{B}}}{N_{B}+N_{\bar{B}}}=0$	
May $17-26,2005$	to $\frac{N_{B}-N_{\bar{B}}}{N_{B}+N_{\bar{B}}}=10^{-10}-10^{-9} ?$(one out of 1010 baryons did not anihillate) Course at University of Barcelona Peter Krizan, Ljubljana

Three conditions

Three conditions (A.Saharov, 1967):

- baryon number violation
- violation of CP and C symmetries
- non-equillibrium state

$$
\begin{array}{lll}
\mathrm{X} \rightarrow \mathrm{f}_{\mathrm{a}} & \left(\mathrm{~N}_{\mathrm{B}}{ }^{\mathrm{a}}, \mathrm{r}\right) & \mathrm{X} \rightarrow \mathrm{f}_{\mathrm{b}}\left(\mathrm{~N}_{\mathrm{B}}{ }^{\mathrm{b}}, 1-\mathrm{r}\right) \\
\mathrm{X} \rightarrow \overline{\mathrm{f}}_{\mathrm{a}} & \left(-\mathrm{N}_{\mathrm{B}}{ }^{\mathrm{a}}, \overline{\mathrm{r})}\right. & \overline{\mathrm{X}} \rightarrow \overline{\mathrm{f}}_{\mathrm{b}}\left(-\mathrm{N}_{\mathrm{B}}{ }^{\mathrm{b}}, \mathbf{1 - \overline { r })}\right. \text { baryon } \\
\text { number } \mathrm{f}_{\mathrm{b}} \\
\text { decay }
\end{array}
$$

Change in baryon number in the decay of X :

$$
\begin{aligned}
\Delta B=r N_{B}^{a}+ & (1-r) N_{B}^{b}+\bar{r}\left(-N_{B}^{a}\right)+(1-\bar{r})\left(-N_{B}^{b}\right)= \\
& =(r-\bar{r})\left(N_{B}^{a}-N_{B}^{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
N_{B}-N_{\bar{B}}=\Delta B n_{X}= & \mathrm{x} \text { decays to states with } \mathrm{N}_{\mathrm{B}}{ }^{\mathrm{a}} \neq \mathrm{N}_{\mathrm{B}}^{\mathrm{b}} \\
=(r-\bar{r})\left(N_{B}^{a}-N_{B}^{b}\right) n_{X} & ->\text { baryon number violation } \\
& \begin{array}{l}
\mathrm{r} \neq \overline{\mathrm{r}}->
\end{array} \\
& \text { violation of } \mathrm{CP} \text { in } \mathrm{C}
\end{aligned}
$$

In the thermal equilibrium reverse processes would cause $\Delta \mathrm{B}=0->$ need an out-of-equilibrium state

For example: X lives long enough -> Universe cools down $->$ no X production possible

How to get CP + baryon number

Let ϕ be the particle, whose decay violates the baryon number conservation
e.g. in GUT SU(5) the Higgs boson with charge -1/3

In SM the CKM matrix rotates the flavour eigenstates into the mass eingenstates.
H^{0} (neutral Higgs boson of SM) couples only to mass eingenstates, coupling constants do not involve V_{ij};
ϕ couples only to u and d quarks, coupling constants are proportional to V_{ij}-> complex

Not enough CP!

Looking for more CP violating effects that would not fit into the Standard Model:

- Precise determination of unitarity triangle parameters in various processes
- Look for effects in new systems (e.g. B_{s})
-> need the next generation of B factories:
- LHCb at the pp collider
- Super B-factory, asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$collider at $\mathrm{Y}(4 \mathrm{~s})$. with present luminosity $\times 20++$
- Look for CP in the neutrino sector

