Physics at B-factories

Part 3: Search for deviations from the SM predictions, rare decays, D mixing, summary and outlook

Peter Križan

University of Ljubljana and J. Stefan Institute

"Jožef Stefan" Institute

Experimental methods in D⁰ mixing searches

The method: investigate D decays in the decay sequence: $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow \text{specific final states}$

Used for tagging the initial flavour and for background reduction

 $p_{cms}(D^*) > 2.5 \text{ GeV/c}$ eliminates D meson production from $b \rightarrow c$

D⁰ mixing in K⁺K⁻, $\pi^+\pi^-$

Signal: $D^{0} \rightarrow K^{+}K^{-} / \pi^{+}\pi^{-}$ from D^{*} M, Q, σ_t selection optimized in MC

	K+K-	K-π+	π+π-
N_{sig}	111x10 ³	1.22x10 ⁶	49x10 ³
purity	98%	99%	92%

side

band

PRL 98, 211803 (2007), 540fb⁻¹

D⁰ mixing in K⁺K⁻, $\pi^+\pi^-$

evidence for D⁰ mixing (regardless of possible CPV)

 \rightarrow y_{CP} is on the high side of SM expectations

D⁰ mixing in K_S $\pi^+\pi^-$

time-dependent Dalitz plot analysis

ime-dependent Dalitz plot analysis CF. $D^0 \rightarrow K^{*-\pi^+}$

DCS:
$$D^0 \rightarrow K^{*+} \pi^-$$

CP: $D^0 \rightarrow \rho^0 K_s$

time-dependence:

 $m_{\pm}^{2}=m^{2}(K_{S}\pi^{\pm})$: Dalitz variables $\mathcal{M}(m_{-}^2, m_{+}^2, t) \equiv \left\langle K_S \pi^+ \pi^- \left| D^0(t) \right\rangle =$ $=\frac{1}{2}\mathcal{A}(m_{-}^{2},m_{+}^{2})\left[e^{-i\lambda_{1}t}+e^{-i\lambda_{2}t}\right]+\frac{1}{2}\frac{q}{p}\overline{\mathcal{A}}(m_{-}^{2},m_{+}^{2})\left[e^{-i\lambda_{1}t}-e^{-i\lambda_{2}t}\right]$ < f | <u>D</u>0 > < f | D⁰ > $\lambda_{1,2} = m_{1,2} - i\Gamma_{1,2}/2 = f(x,y)$ analogous for $\overline{\mathcal{M}} = \langle f | \overline{D^0}(t) \rangle$

Rate: terms with $cos(x\Gamma t) exp(-\Gamma t)$, $sin(x\Gamma t) exp(-\Gamma t)$, • $exp(-(1+-y) \Gamma t) \rightarrow sensitive to x and y$

18 resonant BW terms + non-resonant contribution

Fit $\mathcal{M}(m_2, m_2, t)$ to data distribution $\Rightarrow x, y$

$$\begin{aligned} & x = (0.80 \pm 0.29 \pm {}^{0.09}_{0.07} \pm {}^{0.10}_{0.14})\% \\ & y = (0.33 \pm 0.24 \pm {}^{0.08}_{0.12} \pm {}^{0.06}_{0.08})\% \end{aligned}$$

D^o mixing: all results combined

B

- Challenge: B decay with at least two neutrinos
- Proceeds via W annihilation in the SM.
- Branching fraction

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Provide information of $f_B |V_{ub}|$
 - $|V_{ub}| \text{ from } B \rightarrow X_u | v \implies f_B \qquad (f) \text{ Lattice}$
 - $\operatorname{Br}(B \to \tau \nu) / \Delta m_{d} \qquad \Longrightarrow |V_{ub}| / |V_{td}|$
- Limits on charged Higgs

Full Reconstruction Method

Fully reconstruct one of the B's to

- Tag B flavor/charge
- Determine B momentum
- Exclude decay products of one B from further analysis

 \rightarrow Offline B meson beam!

Powerful tool for B decays with neutrinos

Event candidate $B^- \rightarrow \tau^- v_{\tau}$

 $B \rightarrow \tau \nu$

τ decay modes

$$\tau^- \to \mu^- \nu \overline{\nu}, e^- \nu \overline{\nu}$$
 $\tau^- \to \pi^- \nu, \pi^- \pi^0 \nu, \pi^- \pi^+ \pi^- \nu$

- Cover 81% of τ decays
- Efficiency 15.8%

Event selection

 Main discriminant: extra neutral ECL energy

Fit to $E_{residual} \rightarrow 17.2^{+5.3}_{-4.7}$ signal events.

 \rightarrow 3.5 σ significance including systematics

 $B \rightarrow \tau \nu_{\tau}$

$$\Rightarrow \quad BF(B^{+} \to \tau^{+} \nu_{\tau}) = (1.79^{+0.56+0.46}_{-0.49-0.51}) \times 10^{-4}$$
$$\Gamma^{SM}(B^{+} \to \ell^{+} \nu) = \frac{G_{F}^{2}}{8\pi} |V_{ub}|^{2} f_{B}^{2} m_{B} m_{\ell}^{2} \left(1 - \frac{m_{\ell}^{2}}{m_{B}^{2}}\right)$$

→ Product of B meson decay constant f_B and CKM matrix element $|V_{ub}|$ $f_B \times V_{ub} = (10.1^{+1.6+1.3}_{-1.4-1.4}) \times 10^{-4} GeV$

Using $|V_{ub}| = (4.39 \pm 0.33) \times 10^{-3}$ from HFAG

$$f_B = 229^{+36+34}_{-31-37} MeV$$

$$f_B = 13\%(exp.) + 8\%(V_{ub})$$

First measurement of f_B!

 $f_B = (216 \pm 22)$ MeV from unquenched lattice calculation [HPQCD, Phys. Rev. Lett. 95, 212001 (2005)]

Charged Higgs contribution to $B \rightarrow \tau v$

Phys. Rev. D 48, 2342 (1993)

300

250

H[±] Mass (GeV/c^{*}) 120

100

50

Charged Higgs limits from $B^- \rightarrow \tau^- \nu_{\tau}$

If the theoretical prediction is taken for f_B \rightarrow limit on charged Higgs mass vs. tan β

$$r_{H} = \frac{BF(B \to \tau \nu)}{BF(B \to \tau \nu)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2}\beta\right)^{2}$$

Belle 417100 BB (95.5% C.L.)

LEP Excluded (95% C.L.)

40

tan β

20

Tevatron Run I

Excluded (95% C.L.)

60

80

100

 $B \rightarrow K^{(\star)} \nu \nu$

- Proceed through electroweak penguin + box diagram.
- Sensitive to New Physics in the loop diagram.
- Theoretically clean: no long distance contributions.
- May be sensitive to light dark matter (C. Bird, PRL 93, 201803 (2004))

$B \rightarrow K^{(*)}vv$: present limits

$B \rightarrow K^{(*)} vv$: prospects for 10/ab

Assuming no changes in the analysis & detector:

Why FCNC decays?

Flavour changing neutral current (FCNC) processes (like $b \rightarrow s, b \rightarrow d$) are fobidden at the tree level in the Standard Model. Proceed only at low rate via higher-order loop diagrams. Ideal place to search for new physics.

How can New Physics contribute to $b \rightarrow s$?

For example in the process:

Ordinary penguin diagram with a t quark in the loop

Diagram with supersymmetric particles

Searching for new physics phases in CP violation measurements in $b \rightarrow s$ decays

Prediction in SM:

$$a_f = -\operatorname{Im}(\lambda_f) \sin(\Delta m t)$$

$$\operatorname{Im}(\lambda_f) = \xi_f \sin 2\phi_1$$

The same value as in the decay $B^0 \rightarrow J/\psi K_s!$

This is only true if there are no other particles in the loop! In general the parameter can assume a different value $sin2\phi_1^{eff}$

Result of 2003 (140/fb): surprise!

Measurement: points with error bars.

Standard Model predictions: dotted

Result of the unbinned likelihood fit: blue curve

Measure: S=-0.96±0.50, expect S= $sin2\phi_1$ =+0.731 ± 0.056

not conclusive \rightarrow needed more data

Search for NP: $b \rightarrow sqq$

Searches for new sources of quark mixing and CP violation

CP asymmetries of penguin dominated B decays

A difference in the direct violation of CP symmetry in B^+ and B^0 decays

CP asymmetry $\mathcal{A}_{f} = \frac{N(\overline{B} \to \overline{f}) - N(B \to f)}{N(\overline{B} \to \overline{f}) + N(B \to f)}$

Difference between B⁺ and B⁰ decays In SM expect $\mathcal{A}_{K^{\pm}\pi^{\mp}} \approx \mathcal{A}_{K^{\pm}\pi^{0}}$

Measure:

 $\begin{aligned} \mathcal{A}_{K^{\pm}\pi^{\mp}} &= -0.094 \pm 0.018 \pm 0.008 \\ \mathcal{A}_{K^{\pm}\pi^{0}} &= +0.07 \pm 0.03 \pm 0.01 \end{aligned}$

 $\Delta \mathcal{A} = +0.164 \pm 0.037$

A problem for a SM explanation (in particular when combined with other measurements)

A hint for new sources of CP violation?

a	ure	International weekly journal of science	

LETTERS

Difference in direct charge-parity violation between charged and neutral *B* meson decays

Vol 452 20 March 2008 doi:10.1038/nat

The Belle Collaboration*

 $b \rightarrow s ||^{-1}$ was first measured in $B \rightarrow K ||^{-1}$ by Belle (2001).

Important for further searches for the physics beyond SM

Particularly sensitive: backward-forward asymmetry in K^{*} I⁺I

$$A_{FB} \propto \Re \left[C_{10}^* \left(s C_9^{eff} \left(s \right) + r(s) C_7 \right) \right]$$

 C_i : Wilson coefficients, abs. value of C_7 from b \rightarrow s γ s=lepton pair mass squared

Backward-forward asymmetry in K^{*} I⁺I

$A_{FB}(B \rightarrow K^* I^+ I^-)[q^2]$ at a Super B Factory

Zero-crossing q² for A_{FB} will be determined with a 5% error with 50ab⁻¹.

Strong competition from LHCb and ATLAS/CMS

LFV and New Physics

10-9

10-10

Non-Universal Z'

SUSY+Higgs

10⁻⁸

 10^{-7}

bljana 28

Precision measurements of τ decays

LF violating τ decay?

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau v$, $D\tau v$) by fully reconstructing the other B meson
- Observation of D mixing
- CP violation in $b \rightarrow$ s transitions: probe for new sources if CPV
- Forward-backward asymmetry (A_{FB}) in b \rightarrow sl⁺l⁻ has become a powerfull tool to search for physics beyond SM.
- Observation of new hadrons

New hadrons at B-factories

Discoveries of many new hadrons at B-factories have shed light on new class of hadrons beyond the ordinary mesons.

There is a good chance to see new phenomena:
 – CPV in B decays from the new physics (non KM)

– Lepton flavor violations in τ decays.

- They will help to diagnose (if found) or constraint (if not found) new physics models.
- Even in the worst case scenario (such as MFV), $B \rightarrow \tau v$, $D\tau v$ can probe the charged Higgs in large tan β region.
- Physics motivation is independent of LHC.
 - If LHC finds NP, precision flavour physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be an unique way to search for the TeV scale physics.

Super B Factory Motivation 2

• A lesson from history: the top quark

• There are many more topics: CPV in charm, new hadrons, ...

KEKB Upgrade Plan : Super-B Factory at KEK

- Asymmetric energy e⁺e⁻ collider at E_{CM}=m(Υ(4S)) to be realized by upgrading the existing KEKB collider.
- Initial target: 10×higher luminosity $\cong 2 \times 10^{35}$ /cm²/sec after 3 year shutdown $\rightarrow 2 \times 10^{9} BB$ and $\tau^{+}\tau^{-}$ per yr.
- Final goal: $L=8\times10^{35}/cm^{2}/sec$ and $\int L dt = 50 ab^{-1}$

Crab cavity commissioning

Installed in the KEKB tunnel (February 2007)

Belle Upgrade for Super-B

SVD Upgrade

- Readout chip: VA1TA \rightarrow APV25
 - Reduction of occupancy coming from beam background.
 - Pipeline readout to reduce dead time.
- Sensors of the innermost layer: Normal double sided Si detector (DSSD) → Pixel sensors
- Configuration: 4 layers →6 layers (outer radius = 8cm→14cm)
 - More robust tracking
 - Higher Ks vertex reconstruction efficiency
- Inner radius: 1.5cm \rightarrow 1.0cm
 - Better vertex resolution. Not on day 1.

Aerogel RICH

• Proximity focusing RICH with multilayer aerogel radiator with different indices.

Multi-pixel photodetector to measure single photon positions in B=1.5T \rightarrow HAPD/MCP-PMT/G-APD

Aerogel RICH – test results

SiPMs for Aerogel RICH

Main challenge: R+D of a photon detector for operation in high magnetic fields (1.5T). Candidates:

•MCP PMT: excellent timing, could be also used as a TOF counter

•HAPD: development with HPK

•SiPMs: easy to handle, but never before used for single photon detection (high dark count rate with single photon pulse height) \rightarrow use a <u>narrow time window</u> and <u>light concentrators</u>

Detector module for beam tests at KEK

Cherenkov ring with SiPMs

Summary

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance.
- Major upgrade in 2009-12 \rightarrow Super B factory, L x10 \rightarrow x40
- Essentially a new project, all components have to be replaced, plans exist (LoI and baseline design), nothing is frozen...
- Expect a new, exciting era of discoveries, complementary to LHC

More:

http://www-f9.ijs.si/~krizan/sola/bad-liebenzell/bad-liebenzell.html

Luminosity gain and upgrade items (preliminary)

Item	Gain	Purpose
beam pipe	x 1.5	high current, short bunch, electron cloud
IR($\beta_{x/y}^*$ =20cm/3 mm)	x 1.5	small beam size at IP
low emittance(12 nm) & $v_x \rightarrow 0.5$	x 1.3	mitigate nonlinear effects with beam-beam
crab crossing	x 2	mitigate nonlinear effects with beam-beam
RF/infrastructure	x 3	high current
DR/e ⁺ source	x 1.5	low β^* injection, improve e ⁺ injection
charge switch	x ?	electron cloud, lower e+ current

Super-KEKB (cont'd)

Ante-chamber /solenoid for reduction of electron clouds

Requirements for the Super B detector

Critical issues at L= 4 x 10³⁵/cm²/sec

- Higher background (×20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Possible solution:

- Replace inner layers of the vertex detector with a silicon striplet or pixel detector.
- Replace inner part of the central tracker with a silicon strip detector.
- Better particle identification device
- Replace endcap calorimeter by pure Csl.
- Faster readout electronics and computing system.

September 5, 2008

Model-indep. check of NP

M. Gronau, PLB 627, 82 (2005);

A_{cp} (Kπ) sum rule

D. Atwood & A. Soni, Phys. Rev. D 58, 036005(1998).

$$\mathcal{A}_{CP}(K^{+}\pi^{-}) + \mathcal{A}_{CP}(K^{0}\pi^{+})\frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = \mathcal{A}_{CP}(K^{+}\pi^{0})\frac{2\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + \mathcal{A}_{CP}(K^{0}\pi^{0})\frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})}\frac{2\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})}\frac{2\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{2\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})}\frac{2\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{2\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{2\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{2\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{2\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0$$

$$A(s\overline{s}s) = V_{cb}V_{cs}^{*}(P_{s}^{c} - P_{s}^{t}) + V_{ub}V_{us}^{*}(P_{s}^{u} - P_{s}^{t}).$$
$$V_{cb}V_{cs}^{*} = A\lambda^{2} \qquad V_{ub}V_{us}^{*} = A\lambda^{4}(\rho - i\eta)$$

First term dominates \rightarrow

 λ same as for $J/\psi K_s$

$$\lambda_{\phi K_{S}} = \eta_{\phi K_{S}} \left(\frac{V_{tb}^{*} V_{td}}{V_{tb} V_{td}^{*}} \right) \left(\frac{V_{cd}^{*} V_{cb}}{V_{cd} V_{cb}^{*}} \right)$$

*

1

 $\operatorname{Im}(\lambda_{\phi K_s}) = \sin 2\phi_1 = \sin 2\beta$

Course at University of Tokyo

 \rightarrow