Physics at B-factories

Part 2: Measurements of the angles and sides of the unitarity triangle

Peter Križan

University of Ljubljana and J. Stefan Institute

"Jožef Stefan" Institute

To measure $sin2\phi_1$, we have to measure the time dependent CP asymmetry in $B^0 \rightarrow J/\Psi K_s$ decays

$$a_{f_{CP}} = -\operatorname{Im}(\lambda_{f_{CP}})\sin(\Delta mt) = \frac{\sin 2\phi_1}{\sin(\Delta mt)}$$
$$\lambda_{f_{CP}} = \eta_{f_{CP}} \frac{q}{p} \frac{\overline{A_{f_{CP}}}}{A_{f_{CP}}}$$

Reconstructing final states X which decayed to several particles (x,y,z): From the measured tracks calculate the invariant mass

of the system (i=x,y,z):

$$M = \sqrt{(\sum E_{i})^{2} - (\sum \vec{p}_{i})^{2}}$$

The candidates for the X->xyz decay show up as a peak in the distribution on (mostly combinatorial) background.

The name of the game: have as little background under the peak as possible without loosing the events in the peak (=reduce background and have a small peak width).

A golden channel event

Reconstructing chamonium states

Reconstructing K⁰_S

Reconstruction of rare B meson decays

Continuum suppression

Reconstruction of b-> c anti-c s CP=-1 eigenstates

2958 events are used in the fit

Reconstruction of b-> c anti-c s CP=-1 eigenstates

 $J/\Psi(\Psi,\chi_{c1},\eta_c) \ K_s(K^{*0}) \ \text{sample } (\eta_f=-1) \ BaBar \ 2002 \ result$ from 88(85)x10⁶ BB

Reconstruction of b-> c anti-c s CP=+1 eigenstates

- \blacklozenge detection of K_L in KLM and ECL
- K_L direction, no energy

- $𝔥 p^* ≈ 0.35~{\rm GeV/c}$ for signal events
- background shape is determined from MC, and its size from the fit to the data

Principle of CPV Measurement

Final result

CP is violated! Red points differ from blue.

Red points: anti-B⁰ -> f_{CP} with CP=-1 (or B⁰ -> f_{CP} with CP=+1)

Blue points: $B^0 \rightarrow f_{CP}$ with CP=-1 (or anti- $B^0 \rightarrow f_{CP}$ with CP=+1)

Belle, 2002 statistics (78/fb, 85M B B pairs)

Fitting the asymmetry

Fitting function:

Fitting: unbinned maximum likelihood fit event-by-event Fitted parameter: $Im(\lambda)$

BaBar vs Belle $sin2\phi_1$

More data....

Larger sample \rightarrow •smaller statistical error (1/ \sqrt{N}) •better understanding of the detector, calibration etc

→ error improves by better than with $1/\sqrt{N}$

$b \rightarrow c$ anti-c s CP=+1 and CP=-1 eigenstates

$$a_{f_{CP}} = -\operatorname{Im}(\lambda_{f_{CP}})\sin(\Delta mt)$$

Asymmetry sign depends on the CP parity of the final state $f_{CP'} \eta_{fcp} = +-1$

$$\lambda_{f_{CP}} = \eta_{f_{CP}} \frac{q}{p} \frac{A_{\overline{f}_{CP}}}{A_{f_{CP}}}$$

J/
$$\psi$$
 K_S ($\pi^+ \pi^-$): CP=-1
•J/ ψ : P=-1, C=-1 (vector particle J^{PC}=1⁻⁻): CP=+1
•K_S (-> $\pi^+ \pi^-$): CP=+1, orbital ang. momentum of pions=0 ->
P ($\pi^+ \pi^-$)=($\pi^- \pi^+$), C($\pi^- \pi^+$) =($\pi^+ \pi^-$)

•orbital ang. momentum between J/ ψ and K_S l=1, P=(-1)¹=-1

 $J/\psi K_{L}(3\pi): CP=+1$

Opposite parity to $J/\psi K_S(\pi^+ \pi^-)$, because $K_L(3\pi)$ has CP=-1

CP violation in the B system

CP violation in B system: from the discovery in $B^0 \rightarrow J/\Psi K_s$ decays (2001) to a precision measurement (2006)

sin2
$$\phi_1$$
=sin2 β from b \rightarrow ccs
535 M BB pairs

sin2_{\$\phi_1\$} = 0.642 ±0.031 (stat) ±0.017 (syst)

How to measure $\phi_2(\alpha)$?

To measure $\sin 2\phi_2$, we measure the time dependent CP asymmetry in $B^0 \rightarrow \pi\pi$ decays

$$\begin{split} a_{f_{CP}} &= \frac{P(\overline{B}^{0} \to f_{CP}, t) - P(B^{0} \to f_{CP}, t)}{P(\overline{B}^{0} \to f_{CP}, t) + P(B^{0} \to f_{CP}, t)} = \lambda_{f_{CP}} = \eta_{f_{CP}} \frac{q}{p} \frac{\overline{A_{f_{CP}}}}{A_{f_{CP}}} \\ &= \frac{(1 - |\lambda_{f_{CP}}|^{2})\cos(\Delta mt) - 2\operatorname{Im}(\lambda_{f_{CP}})\sin(\Delta mt)}{1 + |\lambda_{f_{CP}}|^{2}} \end{split}$$

In this case in general $\lambda \neq 1 \rightarrow$ much harder to extract ϕ_2 from the CP violation measurement

Decay asymmetry calculation for B-> $\pi^+ \pi^-$ - tree diagram only

Neglected possible penguin amplitudes ->

$\pi^+ \pi^-$ - tree vs penguin

 $V_{ub}V_{ud}^* = A\lambda^3(\rho - i\eta)$ $V_{tb}V_{td}^* = A\lambda^3(1 - \rho + i\eta)$

How much does the penguin contribute? Compare $B \rightarrow K^+\pi^-$ and $B \rightarrow \pi^+\pi^-$

 \rightarrow

Diagrams for $B \rightarrow \pi \pi$, $K\pi$ decays

 $\pi\pi$

•Penguin amplitudes (without CKM factors) expected to be equal in both.

•BR($\pi\pi$) ~ 1/4 BR(K π)

• •K π : penguin dominant \rightarrow penguin in $\pi\pi$ must be important

B→ π^+ π^- : results of the fit, plotted with background subtracted

$$a_{f_{CP}} = \frac{P(\overline{B}^{0} \to f_{CP}, t) - P(B^{0} \to f_{CP}, t)}{P(\overline{B}^{0} \to f_{CP}, t) + P(B^{0} \to f_{CP}, t)} =$$
$$= S_{f_{CP}} \sin(\Delta mt) - A_{f_{CP}} \cos(\Delta mt)$$

 $S_{\pi\pi} = -0.67 \pm 0.16 \pm 0.06$

 $A_{\pi\pi} = 0.56 \pm 0.12 \pm 0.06$

→ direct CP violation!
 Evident on this plot:
 Number of anti-B events
 < Number of B events

$$a_{f} = \frac{\Gamma(B \to f) - \Gamma(\overline{B} \to \overline{f})}{\Gamma(B \to f) + \Gamma(\overline{B}^{-} \to \overline{f})} = \frac{1 - |\overline{A}/A|^{2}}{1 + |\overline{A}/A|^{2}}$$

Need $|\overline{A}/A| \neq 1$: how do we get there?

In general, A is a sum of amplitudes with strong phases δ_i and weak phases ϕ_i . The amplitudes for anti-particles have the same strong phases and opposite weak phases ->

 $A_{f} = \sum_{i} A_{i} e^{i(\delta_{i} + \varphi_{i})}$ $\overline{A}_{\overline{f}} = \sum_{i} A_{i} e^{i(\delta_{i} - \varphi_{i})}$

$$\left|A_{f}\right|^{2} - \left|\overline{A}_{\overline{f}}\right|^{2} = \sum_{i,j} A_{i}A_{j}\sin(\varphi_{i} - \varphi_{j})\sin(\delta_{i} - \delta_{j})$$

 \rightarrow Need at least two interfering amplitudes with different weak and strong phases.

B-> $\pi^+ \pi^-$: interpretation

Interpretation:
tree level

$$\lambda_{\pi\pi} = e^{2i\phi_2} \rightarrow \lambda_{\pi\pi} = e^{2i\phi_2} \frac{1 + |P/T| e^{\odot i \odot}}{1 + |P/T| e^{i\delta - i\phi_3}} \equiv |\lambda_{\pi\pi}| e^{2i\phi_{2eff}}$$
strong phase

$$A_{\pi\pi} = 0 \rightarrow A_{\pi\pi} \propto \sin \delta$$

$$S_{\pi\pi} = \sin(2\phi_2) \rightarrow S_{\pi\pi} = \sqrt{1 - A^2_{\pi\pi}} \sin(2\phi_{2eff})$$

$$\phi_{2eff} \text{ depends on } \delta, \phi_3, \phi_2 \text{ and } |P/T|$$

$$\pi = \phi_1 + \phi_2 + \phi_3 \rightarrow \phi_{2eff} \text{ depends on } \delta, \phi_1, \phi_2 \text{ and } |P/T|$$

$$\phi_1; \text{ well measured}$$

Extraction of ϕ_2

Use measured BRs and asymmetries in all three $B \rightarrow \pi \pi$ decays $\rightarrow \text{extract } \phi_2$

```
Similar analysis as for B \rightarrow \pi \pi also for B \rightarrow \rho \rho

(\phi_2^{eff} \text{ closer to } \phi_2)

... and for B \rightarrow \rho \pi
```


$$\phi_2 = 106^{\circ} \pm {}^{80}_{11^{\circ}}$$

How to measure ϕ_3 ?

No easy (=tree dominated) channel to measure ϕ_3 through CP violation.

Any other idea? Yes.

$$\gamma \equiv \phi_3 \equiv \arg\left(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

 ϕ_3 from interference of a direct and colour suppressed decays

Basic idea: use $B^- \rightarrow K^- D^0$ and $B^- \rightarrow K^- \overline{D^0}$ with $D^0, \overline{D^0} \rightarrow f$ interference $\leftrightarrow \phi_3$

f: any final state, common to decays of both D^0 and $\overline{D}{}^0$

ϕ_3 from interference of a direct and colour suppressed decays

Gronau,London,Wyler, 1991:
$$B^- \rightarrow K^-D^0_{CP}$$

Atwood,Dunietz,Soni, 2001: $B^- \rightarrow K^-D^{0(*)}[K^+\pi^-]$
Belle;Giri,Zupan et al., 2003: $B^- \rightarrow K^-D^{0(*)}[K_5\pi^+\pi^-]$
Dalitz plot
Density of the Dalitz plot depends on ϕ_3
Matrix element:
 $M_+ = f(m_+^2, m_-^2) + re^{i\phi_3 + i\delta}f(m_-^2, m_+^2)$,

Sensitivity depends on $r = \sqrt{\frac{Br(B^- \to \overline{D}^{(*)^0} K^-)}{Br(B^- \to D^{(*)^0} K^-)}} \approx 0.1 - 0.3$ or any other common 3-body decay

ϕ_3 from interference of a direct and colour suppressed decay

 $B^+ \rightarrow D^0 K^+$ $B^- \rightarrow D^0 K^$ m² (GeV²/c⁴) m² (GeV²/c⁴) $B^+ \rightarrow D^0 K^+$ $B^- \rightarrow D^0 K^-$ 139 events 2.5 137 events ² ² ² ² ² ² ^{1.5} ^{1.5} ² ² ² ² ² ² ^{1.5} 2 2 0.5 0.5 1.5 1.5 0.5 1 2 2.5 0.5 2 2.5 1 m². (GeV²/c⁴) m²₊ (GeV²/c⁴) $m^{2}(K_{s}\pi^{+})$ $m^2(K_s\pi^+)$ Visible asymmetry $\phi_3 = (68 \pm {}^{14}_{15} \pm 13 \pm 11)^{\circ}$ Fit with ϕ_3, δ, r_B free $22^{\circ} < \phi_3 < 113^{\circ}$ @ 95% C.L. $r_{\rm R} = 0.21 \pm 0.08 \pm 0.03 \pm 0.04$

Update 2006

 $\phi_3 = (53 \pm {}^{15}_{18} \text{ (stat)} \pm 3 \text{ (syst)} \pm 9 \text{ (model)})^\circ$

Unitary triangle: one of the sides is determined by V_{ub}

|V_{ub}| measurements

From semileptonic B decays

 $b \rightarrow cl_{\nu}$ background typically an order of magnitude larger.

Traditional inclusive method: fight the background from $b \rightarrow cl_V$ decays by using only events with electron momentum above the $b \rightarrow cl_V$ kinematic limit. Problem: extrapolation to the full phase space \rightarrow large theoretical uncertainty.

New method: fully reconstruct one of the B mesons, check the properties of the other (semileptonic decay, low mass of the hadronic system)

- •Very good signal to noise
- •Low yield (full reconstruction efficiency is 0.3-0.4%)

Full Reconstruction Method

Fully reconstruct one of the B's to

- Tag B flavor/charge
- Determine B momentum
- Exclude decay products of one B from further analysis

 \rightarrow Offline B meson beam!

Powerful tool for B decays with neutrinos

Fully reconstructed sample

 $\mathbf{M}_{\rm hc} \, (\mathrm{GeV/c}^2)$

M_x analysis

Use the mass of the hadronic system M_x as the discriminating variable against $b \to c l \nu$

 M_x = mass of all hadrons from the B decay.

Expect:

•M_x for b \rightarrow clv to be above 1.8 GeV (b \rightarrow clv results in a D meson with >1.8 GeV)

• M_x for $b \rightarrow ulv$ to mainly below 1.8 GeV ($B \rightarrow \pi lv, \rho lv, \omega lv \dots$)

All measurements combined...

Constraints from measurements of angles and sides of the unitarity triangle \rightarrow

Back-up slides

What is a Dalitz plot?

Example: three body decay X->abc. $M_{\rm ii}$ denotes the invariant mass of the GeV)² two-particle system (*ij*) in a three body decay. Kinematic boundaries: drawn for equal masses $m_a = m_b = m_c = 0.14$ Ge and for two values of total energy *E* of the three-pion system. Resonance bands: drawn for states (*ab*) and (*bc*) 😤 💀 corresponding to a (fictitious) resonanc with M=0.5 GeV and Γ =0.2 GeV; dotdash lines show the locations a (*ca*) resonance band would have for this mass of 0.5 GeV, for the two values of the total energy *E*.

The pattern becomes much more complicated, if the resonances interfere.

Richard H. Dalitz, "Dalitz plot", in AccessScience@McGraw-Hill, http://www.accessscience.com.

φ_3 from interference of a direct and colour suppressed decay

Use D⁰ decays from D^{*-} \rightarrow D⁰π⁻, D⁰ \rightarrow K_sπ⁺π⁻ decay to model Dalitz plot density in two variables: m²(K_sπ⁺)=m₊² and m²(K_sπ⁻)=m_2²

FIG. 5. (a) m_{\pm}^2 , (b) m_{-}^2 , (c) $m_{\pi\pi}^2$ distributions and (d) Dalitz plot for the $\bar{D}^0 \to K_S \pi^+ \pi^-$ decay from the $D^{*\pm} \to D \pi_s^{\pm}$ process. The points with error bars show the data; the smooth curve is the fit result.

Cou

Update 2006

|V_{ub}| Results

Course at University of Tokyo

Penguin amplitudes for $B \rightarrow K^+\pi^-$ and $B \rightarrow \pi^+\pi^-$ are expected to be equal. Contribution to A(uus) in $K^+\pi^$ enhanced by λ in comparison to $\pi^+\pi^-$

 $B \rightarrow K^+\pi^-$ tree contribution suppressed by $\lambda^2 vs \pi^+\pi^-$.

Experiment: Br($B \rightarrow K^{+}\pi^{-}$) = 1.85 10⁻⁵, Br($B \rightarrow \pi^{+}\pi^{-}$) = 0.48 10⁻⁵

→ Br($B \rightarrow \pi^+\pi^-$) ~ 1/4 Br($B \rightarrow K^+\pi^-$) → penguin contribution must be sizeable

B-> $\pi^+ \pi^-$: interpretation

$$A(u\overline{u}d) = V_{cb}V_{cd}^{*}(P_{d}^{c} - P_{d}^{t}) + V_{ub}V_{ud}^{*}(T_{u\overline{u}d} + P_{d}^{u} - P_{d}^{t}) =$$

= $V_{ub}V_{ud}^{*}T_{u\overline{u}d}\left[1 + (P_{d}^{u} - P_{d}^{t}) + (V_{cb}V_{cd}^{*}/V_{ub}V_{ud}^{*})(P_{d}^{c} - P_{d}^{t})\right] \quad \gamma \equiv \phi_{3} \equiv \arg\left(\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right)$

Course at University of Tokyo

 ϕ_{2eff} depends on δ , ϕ_3 , ϕ_2 and |P/T|

 $\pi = \phi_1 + \phi_2 + \phi_3 \rightarrow \phi_{2eff}$ depends on δ , ϕ_1 , ϕ_2 and |P/T|

 ϕ_1 ; well measured

penguin amplitudes $B \rightarrow K^{+}\pi^{-}$ and $B \rightarrow \pi^{+}\pi^{-}$ are equal \rightarrow limits on |P/T| (~0.3); considering the full interval of δ values one can obtain interval of ϕ_2 values;

isospin relations can be used to constrain δ (or better to say $\phi_2 - \phi_{2eff}$);

