Physics at B-factories

Part 1: Introduction, CP violation primer, detectors

Peter Križan

University of Ljubljana and J. Stefan Institute

University
of Ljubljana

"Jožef Stefan" Institute

Contents of this course

-Lecture 1: Introduction, CP violation primer, detectors
-Lecture 2: Measurements of angles and sides of the unitarity triangle
-Lecture 3: Searches for physics beyond SM, outlook, summary

http://www-f9.ijs.si/~krizan/sola/bad-liebenzell/bad-liebenzell.html

-Slides
-Literature
-Program, timetable

Standard Model: content

Particles:

- leptons $\left(\mathrm{e}, v_{\mathrm{e}}\right),\left(\mu, v_{\mu}\right),\left(\tau, v_{\tau}\right)$
- quarks (u,d), (c,s), (t,b)

Interactions:

- Electromagnetic (γ)
- Weak (W+ ${ }^{+}$W-, Z^{0})
- Strong (g)

Higgs field

Flavour physics

B factories main topic: flavour physics
... is about

- quarks
and
- their mixing
- CP violation

Flavour physics and CP violaton

Moments of glory in flavour physics are very much related to CP violation:
Discovery of CP violation (1964)
The smallness of $\mathrm{K}_{\mathrm{L}} \rightarrow \mu^{+} \mu^{-}$predicts charm quark
GIM mechanism forbids FCNC at tree level
KM theory describing CP violation predicts third quark generation
$\Delta \mathrm{m}_{\mathrm{K}}=\mathrm{m}\left(\mathrm{K}_{\mathrm{L}}\right)-\mathrm{m}\left(\mathrm{K}_{\mathrm{S}}\right)$ predicts charm quark mass range
Frequency of $\mathrm{B}^{0} \mathrm{~B}^{0}$ mixing predicts a heavy top quark
Proof of Kobayashi-Maskawa theory $\left(\sin 2 \phi_{1}\right)$
Tools to find physics beyond SM: search for new sources of flavour/CPviolating terms

CP Violation

Fundamental quantity: distinguishes matter from anti-matter.

A bit of history:

- First seen in K decays in 1964
- Kobayashi and Maskawa propose in 1973 a mechanism to fit it into the Standard Model \rightarrow had to be checked in at least one more system, needed 3 more quarks
- Discovery of B anti-B mixing at ARGUS in 1987 indicated that the effect could be large in B decays (I.Bigi and T.Sanda)
- Many experiments were proposed to measure CP violation in B decays, some general purpose experiments tried to do it
- Measured in the B system in 2001 by the two dedicated spectrometers Belle and BaBar at asymmetric $\mathrm{e}^{+} \mathrm{e}^{-}$colliders B factories

What happens in the B meson system?

Why is it interesting? Need at least one more system to understand the mechanism of CP violation.

Kaon system: hard to understand what is going on at the quark level (light quark bound system, large dimensions).
B has a heavy quark, a smaller system, and is easier for interpreting the experimental results.

First B meson studies were carried out in 70s at $\mathrm{e}^{+} \mathrm{e}^{-}$ colliders with cms energies $\sim 20 \mathrm{GeV}$, considerably above threshold ($\sim 2 x 5.3 \mathrm{GeV}$)

B mesons: long lifetime

Isolate samples of high- p_{T} leptons (155 muons, 113 electrons) wrt thrust axis
Measure impact parameter δ wrt interaction point

Lifetime implies \mathbf{V}_{cb} small
MAC: (1.8 $\pm 0.6 \pm 0.4) p s$
Mark II: (1.2 $\pm 0.4 \pm 0.3) p s$

Integrated luminosity at
29 GeV: 109 (92) pb ${ }^{-1}$ ~3,500 bb pairs

MAC, PRL 51, 1022 (1983) MARK II, PRL 51, 1316 (1983)

Systematic studies of B mesons: at Y(4s)

Systematic studies of B mesons at Y(4s)

80s-90s: two very successful experiments:
-ARGUS at DORIS (DESY)
-CLEO at CESR (Cornell)
Magnetic spectrometers at $\mathrm{e}^{+} \mathrm{e}^{-}$ colliders (5.3GeV+5.3GeV beams)

Large solid angle, excellent tracking and good particle identification (TOF, dE/dx, EM calorimeter, muon chambers).

Mixing in the B^{0} system

1987: ARGUS discovers BB mixing: B^{0} turns into anti- B^{0}

Reconstructed event

$$
\chi_{d}=0.17 \pm 0.05
$$

ARGUS, PL B 192, 245 (1987) cited >1000 times.

Time-integrated mixing rate: 25 like sign, 270 opposite sign dilepton events Integrated $Y(4 S)$ luminosity 1983-87: $103 \mathrm{pb}^{-1} \sim 110,000$ B pairs

Mixing in the B^{0} system

$$
\begin{aligned}
& \Delta m \propto \\
& \left|V_{t b}^{*} V_{t d}\right|^{2} m_{t}^{2} \propto \lambda^{6} m_{t}^{2} \\
& \left|V_{c b}^{*} V_{c d}\right|^{2} m_{c}^{2} \propto \lambda^{6} m_{c}^{2}
\end{aligned}
$$

Large mixing rate \rightarrow high top mass (in the Standard Model)
The top quark has only been discovered seven years later!

Systematic studies of B mesons at $\mathrm{Y}(4 \mathrm{~s})$

ARGUS and CLEO: In addition to mixing many important discoveries or properties of

- B mesons
- D mesons
- τ^{-}lepton
- and even a measurement of ν_{τ} mass.

After ARGUS stopped data taking, and CESR considerably improved the operation, CLEO dominated the field in late 90s (and managed to compete successfully even for some time after the B factories were built).

Studies of B mesons at LEP

90s: study B meson properties at the Z^{0} mass by exploiting
-Large solid angle, excellent tracking, vertexing, particle identification
-Boost of B mesons \rightarrow time evolution (lifetimes, mixing)
-Separation of one B from the other \rightarrow inclusive rare $b \rightarrow u$

Studies of B mesons at LEP and SLC

$\mathrm{B}^{0} \rightarrow$ anti- B^{0} mixing, time evolution

Fraction of events with like sign lepton pairs

Almost measured mixing in the B_{s} system (bad luck...)
Large number of B mesons (but by far not enough to do the CP violation measurements...)

Mixing \rightarrow expect sizeable CP Violation (CPV) in the B System

CPV through interference of decay amplitudes

CPV through interference of mixing diagram

CPV through interference between mixing and decảy amplitudes

Directly related to CKM parameters in case of a single amplitude

Golden Channel: $\mathrm{B} \rightarrow \mathrm{J} / \Psi \mathrm{K}_{\mathrm{S}}$

Soon recognized as the best way to study CP violation in the B meson system (I. Bigi and T. Sanda 1987)

Theoretically clean way to one of the parameters $\left(\sin 2 \phi_{1}\right)$

Clear experimental signatures $\left(\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}, \mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{K}_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-}\right)$

Relatively large branching fractions for b->CCS ($\sim 10^{-3}$)
\rightarrow A lot of physicists were after this holy grail

Genesis of Worldwide Effort

Time evolution in the B system

An arbitrary linear combination of the neutral B-meson flavor eigenstates

$$
a\left|B^{0}\right\rangle+b\left|\bar{B}^{0}\right\rangle
$$

is governed by a time-dependent Schroedinger equation

$$
i \frac{d}{d t}\binom{a}{b}=H\binom{a}{b}=\left(M-\frac{i}{2} \Gamma\right)\binom{a}{b}
$$

M and Γ are 2×2 Hermitian matrices. CPT invariance $\rightarrow \mathrm{H}_{11}=\mathrm{H}_{22}$

$$
M=\left(\begin{array}{cc}
M & M_{12} \\
M_{12}^{*} & M
\end{array}\right), \Gamma=\left(\begin{array}{cc}
\Gamma & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma
\end{array}\right) \quad \text { diagonalize } \rightarrow
$$

Time evolution in the B system

The light B_{L} and heavy B_{H} mass eigenstates with eigenvalues $m_{H}, \Gamma_{H}, m_{L}, \Gamma_{L}$ are given by

$$
\begin{aligned}
& \left|B_{L}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle \\
& \left|B_{H}\right\rangle=p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

With the eigenvalue differences

$$
\Delta m_{B}=m_{H}-m_{L}, \Delta \Gamma_{B}=\Gamma_{H}-\Gamma_{L}
$$

They are determined from the M and Γ matrix elements

$$
\begin{aligned}
& \left(\Delta m_{B}\right)^{2}-\frac{1}{4}\left(\Delta \Gamma_{B}\right)^{2}=4\left(\left|M_{12}\right|^{2}-\frac{1}{4}\left|\Gamma_{12}\right|^{2}\right) \\
& \Delta m_{B} \Delta \Gamma_{B}=4 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right)
\end{aligned}
$$

The ratio p / q is

$$
\frac{q}{p}=-\frac{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}{2\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)}=-\frac{2\left(M_{12}{ }^{*}-\frac{i}{2} \Gamma_{12}{ }^{*}\right)}{\Delta m_{B}-\frac{i}{2} \Delta \Gamma_{B}}
$$

What do we know about Δm_{B} and $\Delta \Gamma_{B}$?
$\Delta m_{B}=(0.502+-0.007)$ ps $^{-1}$ well measured

$$
\rightarrow \Delta \mathrm{m}_{\mathrm{B}} / \Gamma_{\mathrm{B}}=\mathrm{x}_{\mathrm{d}}=0.771+-0.012
$$

$\Delta \Gamma_{\mathrm{B}} / \Gamma_{\mathrm{B}}$ not measured, expected $\mathrm{O}(0.01)$, due to decays common to B and anti-B - O(0.001).
$\rightarrow \Delta \Gamma_{\mathrm{B}} \ll \Delta \mathrm{m}_{\mathrm{B}}$

Since $\Delta \Gamma_{B} \ll \Delta m_{B}$

$$
\begin{aligned}
& \Delta m_{B}=2\left|M_{12}\right| \\
& \Delta \Gamma_{B}=2 \operatorname{Re}\left(M_{12} \Gamma_{12}^{*}\right) /\left|M_{12}\right|
\end{aligned}
$$

and

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}} \quad=\text { a phase factor }
$$

or to the
next order

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}\left[1-\frac{1}{2} \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)\right]
$$

B^{0} and \bar{B}^{0} can be written as an admixture of the states B_{H} and B_{L}

$$
\begin{aligned}
& \left|B^{0}\right\rangle=\frac{1}{2 p}\left(\left|B_{L}\right\rangle+\left|B_{H}\right\rangle\right) \\
& \left|\bar{B}^{0}\right\rangle=\frac{1}{2 q}\left(\left|B_{L}\right\rangle-\left|B_{H}\right\rangle\right)
\end{aligned}
$$

Time evolution

Any B state can then be written as an admixture of the states B_{H} and B_{L} and the amplitudes of this admixture evolve in time

$$
\begin{aligned}
& a_{H}(t)=a_{H}(0) e^{-i M_{H} t} e^{-\Gamma_{H} t / 2} \\
& a_{L}(t)=a_{L}(0) e^{-i M_{L} t} e^{-\Gamma_{L} t / 2}
\end{aligned}
$$

$A B^{0}$ state created at $t=0$ (denoted by $\mathrm{B}_{\text {phys }}$) has

$$
a_{H}(0)=a_{L}(0)=1 /(2 p) ;
$$

an anti- B at $\mathrm{t}=0$ (anti- $\mathrm{B}_{\text {phys }}$) has

$$
a_{\mathrm{H}}(0)=-\mathrm{a}_{\mathrm{L}}(0)=1 /(2 \mathrm{q})
$$

At a later time t, the two coefficients are not equal any more because of the difference in phase factors $\exp (-\mathrm{iMt})$
\rightarrow initial B^{0} becomes a linear combination of B and anti- B

Time evolution of B's

Time evolution can also be written in the B^{0} in $\overline{\mathrm{B}}^{0}$ basis:

$$
\begin{aligned}
\left|B_{\text {phys }}^{0}(t)\right\rangle & =g_{+}(t)\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left|\bar{B}^{0}\right\rangle \\
\left|\bar{B}_{p h y s}^{0}(t)\right\rangle & =(p / q) g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

with

$$
\begin{gathered}
g_{+}(t)=e^{-i M t} e^{-\Gamma t / 2} \cos (\Delta m t / 2) \\
g_{-}(t)=e^{-i M t} e^{-\Gamma t / 2} i \sin (\Delta m t / 2) \\
M=\left(M_{H}+M_{L}\right) / 2
\end{gathered}
$$

If B mesons were stable ($\Gamma=0$), the time evolution would look like:

$$
\begin{aligned}
& g_{+}(t)=e^{-i M t} \cos (\Delta m t / 2) \\
& g_{-}(t)=e^{-i M t} i \sin (\Delta m t / 2)
\end{aligned}
$$

\rightarrow Probability that a B turns into its anti-particle $\quad \rightarrow$ beat

$$
\left|\left\langle\bar{B}^{0} \mid B_{\text {phys }}^{0}(t)\right\rangle\right|^{2}=|q / p|^{2}\left|g_{-}(t)\right|^{2}=|q / p|^{2} \sin ^{2}(\Delta m t / 2)
$$

\rightarrow Probability that a B remains a B

$$
\left|\left\langle B^{0} \mid B_{\text {phys }}^{0}(t)\right\rangle\right|^{2}=\left|g_{+}(t)\right|^{2}=\cos ^{2}(\Delta m t / 2)
$$

\rightarrow Expressions familiar from quantum mechanics of a two level system

B mesons of course do decay \rightarrow

B^{0} at $t=0$
Evolution in time
-Full line: B^{0}
-dotted: B ${ }^{0}$

T : in units of $\tau=1 / \Gamma$

Decay probability

$$
\begin{array}{ll}
\left.\hline \text { Decay probability } \quad P\left(B^{0} \rightarrow f, t\right) \propto|\langle f| H| B_{p h y s}^{0}(t)\right\rangle\left.\right|^{2}
\end{array}
$$

Decay amplitudes of B and antiB to the same final state \boldsymbol{f}

$$
\begin{aligned}
& A_{f}=\langle f| H\left|B^{0}\right\rangle \\
& \bar{A}_{f}=\langle f| H\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Decay amplitude as a function of time:

$$
\begin{aligned}
& \langle f| H\left|B_{p h y s}^{0}(t)\right\rangle=g_{+}(t)\langle f| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\langle f| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f}+(q / p) g_{-}(t) \bar{A}_{f}
\end{aligned}
$$

... and similarly for the anti-B

CP violation: three types

Decay amplitudes of B and anti- B to the same final state \boldsymbol{f}

$$
\begin{aligned}
& A_{f}=\langle f| H\left|B^{0}\right\rangle \\
& \bar{A}_{f}=\langle f| H\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Define a parameter λ

$$
\lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}
$$

Three types of CP violation (CPV):

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { ep in decay: }|\bar{A} / A| \neq 1 \\
\text { es in mixing: }|q / p| \neq 1
\end{array}\right\}|\lambda| \neq 1 \\
& \text { es in interference between mixing and decay: even if } \\
& |\lambda|=1 \text { if only } \operatorname{Im}(\lambda) \neq 0
\end{aligned}
$$

CP violation in the interference between decays with and without mixing

CP violation in the interference between mixing and decay to a state accessible in both B^{0} and anti- B^{0} decays

For example: a CP eigenstate f_{CP} like $\pi^{+} \pi^{-}$

We can get CP violation if $\operatorname{Im}(\lambda) \neq 0$, even if $|\lambda|=1$

CP violation in the interference between decays with and without mixing

Decay rate asymmetry:

$$
a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}
$$

Decay rate: $\left.\quad P\left(B^{0} \rightarrow f_{C P}, t\right) \propto\left|\left\langle f_{C P}\right| H\right| B_{\text {phys }}^{0}(t)\right\rangle\left.\right|^{2}$
Decay amplitudes vs time:

$$
\begin{aligned}
& \left\langle f_{C P}\right| H\left|B_{p h y s}^{0}(t)\right\rangle=g_{+}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}} \\
& \left\langle f_{C P}\right| H\left|\bar{B}_{p h y s}^{0}(t)\right\rangle=(p / q) g_{-}(t)\left\langle f_{C P}\right| H\left|B^{0}\right\rangle+g_{+}(t)\left\langle f_{C P}\right| H\left|\bar{B}^{0}\right\rangle \\
& =(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}= \\
& =\frac{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}-\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}+\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}= \\
& =\frac{\left(1-\left|\lambda_{f_{C P}}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}} \quad \lambda=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}} \\
& =C \cos (\Delta m t)+S \sin (\Delta m t) \\
& \quad \begin{array}{l}
\text { Non-zero effect if Im }(\lambda) \neq 0, \\
\\
\text { even if }|\lambda|=1
\end{array}
\end{aligned}
$$

$$
\text { If }|\lambda|=1 \rightarrow a_{f_{C P}}=-\operatorname{Im}(\lambda) \sin (\Delta m t)
$$

CP violation in the interference between decays with and without mixing

One more form for λ :

$$
\lambda_{f C P}=\frac{q}{p} \frac{\bar{A}_{f_{C P}}}{A_{f_{C P}}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

\rightarrow we get one more (-1) sign when comparing asymmetries in two states with opposite CP parity

$$
a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)
$$

B and anti-B from the $\mathrm{Y}(4 \mathrm{~s})$

B and anti- B from the $Y(4 s)$ decay are in a $L=1$ state.
They cannot mix independently (either BB or anti-B anti-B states are forbidden with $L=1$ due to Bose symmetry).

After one of them decays, the other evolves independently ->
-> only time differences between one and the other decay matter (for mixing).

Assume
-one decays to a CP eigenstate $f_{C P}\left(\right.$ e.g. $\pi \pi$ or $\left.J / \psi K_{S}\right)$ at time $t_{f C P}$ and
-the other at $\mathrm{t}_{\text {ftag }}$ to a flavor-specific state $\mathrm{f}_{\text {tag }}$ (=state only accessible to a B^{0} and not to a anti- B^{0} (or vice versa), e.g. $B^{0}->D^{0} \pi, D^{0}->K^{-} \pi^{+}$)
also known as 'tag' because it tags the flavour of the B meson it comes from

Decay rate to f_{CP}

Incoherent production
(e.g. hadron collider)

coherent production

$$
\text { at } Y(4 s)
$$

At $\mathrm{Y}(4 \mathrm{~s})$: Time integrated asymmetry $=0$

CP violation in SM

CP violation: consequence of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

$$
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

CKM matrix

3×3 ortogonal matrix: 3 parameters - angles
3×3 unitary matrix: 18 parameters, 9 conditions $=9$ free parameters, 3 angles and 6 phases

6 quarks: 5 relative phases can be transformed away (by redefinig the quark fields)

1 phase left -> the matrix is in general complex

$$
\begin{aligned}
V_{C K M}=(& s_{12} c_{13}
\end{aligned} s_{13} e^{-i \delta}\left(\begin{array}{ccc}
c_{12} c_{13} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
-s_{12} c_{13}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

CKM matrix

Transitions between members of the same family more probable (=thicker lines) than others
-> CKM: almost a diagonal matrix, but not completely

CKM matrix

Almost a diagonal matrix, but not completely ->
Wolfenstein parametrisation: expand in the parameter
$\lambda\left(=\sin \theta_{c}=0.22\right)$
A, ρ and η : all of order one

$$
V=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+O\left(\lambda^{4}\right)
$$

Unitary relations

Rows and columns of the V matrix are orthogonal
Three examples: $1^{\text {st }}+2^{\text {nd }}, 2^{\text {nd }}+3^{\text {rd }}, 1^{\text {st }}+3^{\text {rd }}$ columns

$$
\begin{aligned}
& V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}=0, \\
& V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0, \\
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 .
\end{aligned}
$$

Geometrical representation: triangles in the complex plane.

Unitary triangles
$V_{u d} V_{u s}{ }^{*}+V_{c d} V_{c s}{ }^{*}+V_{t d} V_{t s}^{*}=0$,
$V_{u s} V_{u b}{ }^{*}+V_{c s} V_{c b}{ }^{*}+V_{t s} V_{t b}{ }^{*}=0$,
$V_{u d} V_{u b}{ }^{*}+V_{c d} V_{c b}{ }^{*}+V_{t d} V_{t b}^{*}=0$.

All triangles have the same area $\mathrm{J} / 2$ (about 4×10^{-5})

$$
J=c_{12} c_{23} c_{13}^{2} S_{12} S_{23} S_{13} \sin \delta
$$

Jarlskog invariant

Unitarity triangle

THE unitarity triangle:

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

(a)

Two notations:
$\phi_{1}=\beta$
$\phi_{2}=\alpha$
$\phi_{3}=\gamma$

Angles of the unitarity triangle

$$
\begin{aligned}
& \alpha \equiv \phi_{2} \equiv \arg \left(\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right) \\
& \beta \equiv \phi_{1} \equiv \arg \left(\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right) \\
& \gamma \equiv \phi_{3} \equiv \arg \left(\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}{ }^{*}}\right) \equiv \pi-\alpha-\beta
\end{aligned}
$$

(a)

b decays

Why penguin?

Example: $\mathrm{b} \rightarrow \mathrm{s}$ transition

Peter Križan, Ljubljana

Decay asymmetry predictions - example $\pi^{+} \pi^{-}$

N.B.: for simplicity we have neglected possible penguin amplitudes (which is wrong as we shall see later, when we will do it properly).

A reminder:

$$
\begin{aligned}
& \frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}} \\
& \Delta m_{B}=2\left|M_{12}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \Delta m \propto
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\left|V_{t b}^{*} V_{t d}\right|^{2} m_{t}^{2} & \propto \lambda^{6} m_{t}^{2} \\
\left|V_{c b}^{*} V_{c d}\right|^{2} m_{c}^{2} & \propto \lambda^{6} m_{c}^{2}
\end{aligned}
\end{aligned}
$$

Decay asymmetry predictions - example $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$

$\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c} s}:$ Take into account that we measure the $\pi^{+} \pi^{-}$ component of $K_{s}-a 1$ so need the $(q / p)_{k}$ for the K system

$$
\begin{aligned}
& \lambda_{\mu / K \mathrm{~s}}=\eta_{\psi K \cdot} \cdot \frac{\left(\frac{V_{t b}^{*} V_{t d}}{V_{t b} V_{t d}{ }^{*}}\right)\left(\frac{V_{c s}^{*} V_{c b}}{V_{c s} V_{c b}{ }^{*}}\right)\left(\frac{V_{c d}{ }^{*} V_{c s}}{V_{c d} V_{c s}^{*}}\right)}{(\mathrm{p})_{\mathrm{B}}}= \\
& =\eta_{\psi K \mathrm{Ks}}\left(\frac{V_{t b}{ }^{*} V_{t d}}{V_{t b} V_{t d}{ }^{*}}\right)\left(\frac{V_{c b}}{V_{c b}{ }^{*}} \frac{V_{c d}{ }^{*}}{V_{c d}}\right) \\
& \operatorname{Im}\left(\lambda_{\psi K \mathrm{~S}}\right)=\sin 2 \phi_{1} \\
& \beta \equiv \phi_{1} \equiv \arg \left(\frac{V_{c d} V_{c b}{ }^{*}}{V_{t d} V_{t b}{ }^{*}}\right)
\end{aligned}
$$

$b \rightarrow c$ anti-c s $C P=+1$ and $C P=-1$ eigenstates

$a_{f_{C P}}=-\operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)$

Asymmetry sign depends on the CP parity of the final state $f_{\text {Cpr }} \eta_{\text {fcp }}=+-1$

$$
\lambda_{f_{C P}}=\eta_{f_{C P}} \frac{q}{p} \frac{\bar{A}_{\bar{f}_{C P}}}{A_{f_{C P}}}
$$

$\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right): \mathrm{CP}=-1$
$\bullet \mathrm{J} / \psi: \mathrm{P}=-1, \mathrm{C}=-1$ (vector particle $\mathrm{J}^{\mathrm{PC}}=1^{--}$): $\mathrm{CP}=+1$
$\bullet \mathrm{K}_{\mathrm{S}}\left(->\pi^{+} \pi^{-}\right)$: $\mathrm{CP}=+1$, orbital ang. momentum of pions=0 ->

$$
\mathrm{P}\left(\pi^{+} \pi^{-}\right)=\left(\pi^{-} \pi^{+}\right), \mathrm{C}\left(\pi^{-} \pi^{+}\right)=\left(\pi^{+} \pi^{-}\right)
$$

\bullet - orbital ang. momentum between J / ψ and $\mathrm{K}_{\mathrm{S}} \mathrm{L}=1, \mathrm{P}=(-1)^{1}=-1$

$$
\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}(3 \pi): \mathrm{CP}=+1
$$

Opposite parity to $\mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right)$, because $\mathrm{K}_{\mathrm{L}}(3 \pi)$ has $\mathrm{CP}=-1$

How to measure CP violation?

Principle of measurement
Experimental considerations
Choice of boost
Spectrometer design
Babar and Belle spectrometers

Principle of measurement

Principle of measurement:
-Produce pairs of B mesons, moving in the lab system
-Find events with B meson decay of a certain type (usually $B->f_{C P}$ CP eigenstate)
-Measure time difference between this decay and the decay of the associated $B\left(f_{\text {tag }}\right)$ (from the flight path difference)
-Determine the flavour of the associated B (B or anti- B)
-Measure the asymmetry in time evolution for B and anti-B

Restrict for the time being to B meson production at $\mathrm{Y}(4 \mathrm{~s})$

B meson production at $Y(4 s)$

Principle of measurement

Experimental considerations

What kind of vertex resolution do we need to measure the asymmetry?

$$
P\left(B^{0}\left(\bar{B}^{0}\right) \rightarrow f_{C P}, t\right)=e^{-\Gamma t}\left(1 \mp \sin \left(2 \phi_{1}\right) \sin (\Delta m t)\right)
$$

Want to distinguish the decay rate of B (dotted) from the decay rate of anti-B (full).
-> the two curves should not be smeared too much

Integrals are equal, time information mandatory! (true at $Y(4 s)$, but not for incoherent production)

Experimental considerations

B decay rate vs t for different vertex resolutions in units of typical B flight length $\sigma(\mathrm{z}) / \beta \gamma \tau \mathrm{C}$

Experimental considerations

Error on $\sin 2 \phi_{1}=\sin 2 \beta$ as function of vertex resolution in units of typical B flight length $\sigma(z) / \beta \gamma \tau \mathrm{C}$

For 1 event

for 1000 events

Experimental considerations

Choice of boost $\beta \gamma$:
Vertex resolution vs. path length
Typical B flight length: $z_{B}=\beta \gamma \tau \mathrm{C}$
Typical two-body topology: decay products at 90° in cms; at $\theta=\operatorname{atan}(1 / \beta \gamma)$ in the lab
Assume: vertex resolution determined by multiple scattering in the first detector layer and beam pipe wall at r_{0}

$$
\begin{aligned}
& \sigma_{\theta}=15 \mathrm{MeV} / \mathrm{p} \sqrt{ }\left(\mathrm{~d} / \sin \theta \mathrm{X}_{0}\right) \\
& \sigma(\mathrm{z})=\mathrm{r}_{0} \sigma_{\theta} / \sin ^{2} \theta \\
& \Rightarrow \sigma(\mathrm{z}) \alpha \mathrm{r}_{0} / \sin ^{5 / 2} \theta
\end{aligned}
$$

Experimental considerations

Choice of boost $\beta \gamma$:
Vertex resolution in units of typical B flight length

Boost around $\beta \gamma=0.8$ seems optimal

However....

$$
\beta \gamma \tau c / \sigma(z)
$$

Experimental considerations

Which boost...
Arguments for a smaller boost:

- Larger boost -> smaller acceptance
- Larger boost -> it becomes hard to damp the betatron oscillations of the low energy beam: less synchrotron radiation at fixed ring radius (same as the high energy beam)

Figure 4. The acceptance of a detector covering $\left|\cos \theta_{l a b}\right|<0.95$ for five uncorrelated particles as a function of the energy of the more energetic beam in an asymmetric collider at the $\Upsilon(4 \mathrm{~S})$.

Experimental considerations

Detector form: symmetric for symmetric energy beams; slightly extended in the boost direction for an asymmetric collider.

How many events?

Rough estimate:
Need ~ 1000 reconstructed B-> J $/ \psi \mathrm{K}_{\mathrm{S}}$ decays with $\mathrm{J} / \psi->$ ee or $\mu \mu$, and $\mathrm{K}_{S^{-}}>\pi^{+} \pi^{-}$
$1 / 2$ of $Y(4 s)$ decays are B^{0} anti- B^{0} (but 2 per decay)
$B R\left(B->J / \psi K^{0}\right)=8.410^{-4}$
$\operatorname{BR}(\mathrm{J} / \psi->$ ee or $\mu \mu)=11.8 \%$
$1 / 2$ of K^{0} are $K_{S}, B R\left(K_{S}->\pi^{+} \pi^{-}\right)=69 \%$

Reconstruction effiency ~ 0.2 (signal side: 4 tracks, vertex, tag side pid and vertex)

$$
\begin{aligned}
\mathrm{N}(\mathrm{Y}(4 \mathrm{~s})) & =1000 /(1 / 2 * 1 / 2 * 2 * 8.410-4 * 0.118 * 0.69 * 0.2)= \\
& =140 \mathrm{M}
\end{aligned}
$$

How to produce 140 M BB pairs?

Want to produce 140 M pairs in two years
Assume effective time available for running is $10^{7} \mathrm{~s}$ per year.
\rightarrow need a rate of $14010^{6} /\left(210^{7} \mathrm{~s}\right)=7 \mathrm{~Hz}$
Observed rate of events $=$ Cross section \times Luminosity

$$
\frac{d N}{d t}=L \sigma
$$

Cross section for $\mathrm{Y}(4 \mathrm{~s})$ production: $1.1 \mathrm{nb}=1.110^{-33} \mathrm{~cm}^{2}$
\rightarrow Accelerator figure of merit - luminosity - has to be

$$
L=6.5 / \mathrm{nb} / \mathrm{s}=6.510^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

This is much more than any other accelerator achieved before!

Colliders：asymmetric B factories

Be11e $p\left(e^{-}\right)=8 \mathrm{GeV} p\left(\mathrm{e}^{+}\right)=3.5 \mathrm{GeV}$

Accelerator performance

$\rightarrow 1182 / \mathrm{pb} /$ day

Peter Križan, Ljubljana

Interaction region: BaBar

Head-on collisions

ıjjana

Interaction region: Belle

Collisions at a finite angle +-11mrad
KEKB Interaction Region

Belle spectrometer at KEK-B

BaBar spectrometer at PEP-II

Silicon vertex detector (SVD)

Two coordinates measured at the same time; strip pitch: $50 \mu \mathrm{~m}(75 \mu \mathrm{~m})$; resolution about $15 \mu \mathrm{~m}(20 \mu \mathrm{~m})$.

Silicon vertex detector (SVD)

4 layers

covering polar angle from 17 to 150 degrees

Flavour tagging

Was it a B or an anti- B that decayed to the CP eigenstate?

Look at the decay products of the associated B

- Charge of high momentum lepton

Flavour tagging

Was it a B or anti-B that decayed to the CP eigenstate?
Look at the decay products of the associated B

- Charge of high momentum lepton
- Charge of kaon
- Charge of 'slow pion' (from $D^{*+} \rightarrow D^{0} \pi^{+}$and $D^{*-} \rightarrow D^{0} \pi^{-}$ decays)
-

Charge measured from curvature in magnetic field,
\rightarrow need reliable particle identification

Tracking: BaBar drift chamber

40 layers of wires (7104 cells) in 1.5 Tesla magnetic field Helium:Isobutane 80:20 gas, Al field wires, Beryllium inner wall, and all readout electronics mounted on rear endplate

Particle identification from ionization loss (7\% resolution)

Identification

Hadrons ($\pi, \mathrm{K}, \mathrm{p}$):

- Time-of-flight (TOF)
- $\mathrm{dE} / \mathrm{dx}$ in a large drift chamber
- Cherenkov counters
K_{L} : chambers in the instrumented magnet yoke

Electrons: electromagnetic calorimeter

Muon: chambers in the instrumented magnet yoke

PID coverage of kaon/pion spectra

PID coverage of kaon/pion spectra

Tagging Kaons

$B \rightarrow D K$

Peter Križan, Ljubljana

Cherenkov counters

Essential part of particle identification systems.
Cherenkov relation: $\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=\mathbf{c} / \mathbf{n v}=\mathbf{1} / \beta \mathbf{n}$

Threshold counters \rightarrow count photons to separate particles below and above threshold; for $\beta<\beta_{\mathrm{t}}=1 / \mathrm{n}$ (below threshold) no Čerenkov light is emitted

Ring Imaging (RICH) counter \rightarrow measure Čerenkov angle and count photons

Belle ACC (aerogel Cherenkov counter): threshold Cerenkov counter

K (below thr.) vs. π (above thr.): adjust n

Detector unit: a block of aerogel and two fine-mesh PMTs

measured for $2 \mathrm{GeV}<\mathrm{p}<3.5 \mathrm{GeV}$ expected, measured ph. yield

Belle ACC (aerogel Cherenkov counter): threshold Cherenkov counter

K (below thr.) vs. π (above thr.): adjust n for a given angle kinematic region (more energetic particles fly in the 'forward region')

Peter Križan, Ljubljana

DIRC: Detector of Internally Reflected Cherekov photons

Use Cherenkov relation $\cos \theta=c / n v=1 / \beta n$ to determine velocity from angle of emission

DIRC: a special kind of RICH (Ring Imaging Cherenkov counter) where Cerenkov photons trapped in a solid radiator (e.q. quartz) are propagated along the radiator bar to the side, and detected as they exit and traverse a gap.

DIRC event

Babar DIRC: a Bhabha event $\mathrm{e}^{+} \mathrm{e}^{-}-->\mathrm{e}^{+} \mathrm{e}^{-}$

DIRC performance

DIRC performance

To check the performance, use kinematically selected decays:
$\mathrm{D}^{*+} \rightarrow \pi^{+} \mathrm{D}^{0}, \mathrm{D}^{0}->\mathrm{K}^{-} \pi^{+}$

Calorimetry Design

Requirements

-Best possible energy and position resolution: 11 photons per $\mathrm{Y}(4 \mathrm{~S})$ event; 50% below 200 MeV in energy
-Acceptance down to lowest possible energies and over large solid angle -Electron identification down to low momentum

Constraints

-Cost of raw materials and growth of crystals

- Operation inside magnetic field
-Background sensitivity

Implementation

Thallium-doped Cesium-Iodide crystals with 2 photodiodes per crystal
Thin structural cage to minimize material between and in front of crystals

Calorimetry: BaBar

6580 CsI(TI) crystals with photodiode readout

About $18 \mathrm{X}_{0}$, inside solenoid

$$
\begin{aligned}
\frac{\sigma(E)}{E}= & \frac{(2.32 \pm 0.03 \pm 0.3) \%}{\sqrt[4]{E}} \oplus \\
& (1.85 \pm 0.07 \pm 0.1) \%
\end{aligned}
$$

Muon and K_{L} detector

Separate muons from hadrons (pions and kaons): exploit the fact that muons interact only e.m., while hadrons interact strongly \rightarrow need a few interaction lengths (about 10x radiation length in iron, 20x in CsI)

Detect K_{L} interaction (cluster): again need a few interaction lengths.

Some numbers: 3.9 interaction lengths (iron) +0.8 interaction length (CsI) Interaction length: iron $132 \mathrm{~g} / \mathrm{cm}^{2}$, CsI $167 \mathrm{~g} / \mathrm{cm}^{2}$
$(\mathrm{dE} / \mathrm{dx})_{\min }$: iron $1.45 \mathrm{MeV} /\left(\mathrm{g} / \mathrm{cm}^{2}\right)$, CsI $1.24 \mathrm{MeV} /\left(\mathrm{g} / \mathrm{cm}^{2}\right)$
$\rightarrow \Delta \mathrm{E}_{\text {min }}=(0.36+0.11) \mathrm{GeV}=0.47 \mathrm{GeV} \rightarrow$ reliable identification of muon above ~600 MeV

Muon and K_{L} detector

Up to 21 layers of resistiveplate chambers (RPCs) between iron plates of flux return

Bakelite RPCs at BABAR
Glass RPCs at Belle
(better choice)

Muon and K_{L} detector

Example:

event with
-two muons and a

- ${ }_{\mathrm{L}}$
and a pion that partly penetrated into the muon chamber system

Muon and K_{L} detector performance

Muon and K_{L} detector performance

K_{L} detection: resolution in direction
K_{L} detection: also with possible with electromagnetic calorimeter (0.8 interactin lengths)

Fig. 107. Difference between the neutral cluster and the direction of missing momentum in KLM.

Back-up slides

Introduction to CP

Initial condition of the universe $N_{B}-N_{\bar{B}}=0$
Today our vicinity (at least up to ~ 10 Mpc)
is made of matter and not of anti-matter

$$
\underset{(\text { matter })}{\substack{\text { nb. baryons }}} \frac{N_{B}-N_{\bar{B}}}{N_{\gamma}}=10^{-10}-10^{-9} \underset{\substack{\text { Nb of photons } \\ \text { (microvawe back) }}}{\text { (mick }}
$$

In the early universe $\mathrm{B}+\overline{\mathrm{B}} \rightarrow \gamma \leftrightarrow \mathrm{N}_{\gamma}=\mathrm{N}_{\mathrm{B}}+\mathrm{N}_{\mathrm{B}}$ How did we get from
(one out of
$\frac{N_{B}-N_{\bar{B}}}{N_{B}+N_{\bar{B}}}=0$ to $\frac{N_{B}-N_{\bar{B}}}{N_{B}+N_{\bar{B}}}=10^{-10}-10^{-9} ? \begin{aligned} & \begin{array}{l}10^{10} \\ \text { baryons did } \\ \text { not } \\ \text { anihillate) }\end{array}\end{aligned}$

Introduction to CP

Three conditions (A.Saharov, 1967):

- baryon number violation
- violation of CP and C symmetries
- non-equillibrium state

$$
\begin{array}{lll}
\mathrm{X} \rightarrow \mathrm{f}_{\mathrm{a}} & \left(\mathrm{~N}_{\mathrm{B}}{ }^{a}, \mathrm{r}\right) & \mathrm{X} \rightarrow \mathrm{f}_{\mathrm{b}}\left(\mathrm{~N}_{\mathrm{B}}{ }^{\mathrm{b}}, 1-\mathrm{r}\right)
\end{array} \quad \begin{aligned}
& \text { baryon } \\
& \text { number } \mathrm{f}_{\mathrm{b}} \\
& \overline{\mathrm{X}} \rightarrow \overline{\mathrm{f}_{\mathrm{a}}}\left(-\mathrm{N}_{\mathrm{B}}{ }^{a}, \overline{\mathrm{r})}\right.
\end{aligned} \overline{\mathrm{X} \rightarrow \overline{\mathrm{f}}_{\mathrm{b}}\left(-\mathrm{N}_{\mathrm{B}}{ }^{\mathrm{b}}, 1-\overline{\mathrm{r}}\right)} \begin{aligned}
& \text { decay } \\
& \text { probability }
\end{aligned}
$$

Change in baryon number in the decay of X :

$$
\begin{aligned}
\Delta B=r N_{B}^{a}+ & (1-r) N_{B}^{b}+\bar{r}\left(-N_{B}^{a}\right)+(1-\bar{r})\left(-N_{B}^{b}\right)= \\
& =(r-\bar{r})\left(N_{B}^{a}-N_{B}^{b}\right)
\end{aligned}
$$

Introduction to CP

$$
\begin{array}{ll}
N_{B}-N_{\bar{B}}=\Delta B n_{X}= & \mathrm{x} \text { decays to states with } N_{\mathrm{B}}{ }^{\mathrm{a}} \neq \mathrm{N}_{\mathrm{B}}{ }^{\mathrm{b}} \\
=(r-\bar{r})\left(N_{B}^{a}-N_{B}^{b}\right) n_{X} & \begin{array}{l}
->\text { baryon number violation }
\end{array} \\
\begin{array}{l}
r \neq \bar{r}-> \\
\text { violation of } \mathrm{CP} \text { in } \mathrm{C}
\end{array}
\end{array}
$$

In the thermal equilibrium reverse processes would cause $\Delta \mathrm{B}=0->$
need an out-of-equilibrium state

For example: X lives long enough -> Universe cools down $->$ no X production possible

Introduction to CP

C: charge conjugation
$C\left|B^{0}\right\rangle=\left|\bar{B}^{0}\right\rangle$

P: space inversion $P\left|B^{0}\right\rangle=-\left|B^{0}\right\rangle$

CP: combined operation $C P\left|B^{0}\right\rangle=-\left|\bar{B}^{0}\right\rangle$

Introduction to CP

Example: weak decay $\tau^{-}->\pi^{-} v_{\tau}$

C or P transformed processes: forbidden.
CP transformed process: allowed

CP violation in decay

$$
\begin{aligned}
& \text { es in decay: }|\bar{A} / A| \neq 1 \\
& \quad \text { (and of course also }|\lambda| \neq 1) \\
& a_{f}=\frac{\Gamma\left(B^{+} \rightarrow f, t\right)-\Gamma\left(B^{-} \rightarrow \bar{f}, t\right)}{\Gamma\left(B^{+} \rightarrow f, t\right)+\Gamma\left(B^{-} \rightarrow \bar{f}, t\right)}= \\
& =\frac{1-|\bar{A} / A|^{2}}{1+|\bar{A} / A|^{2}}
\end{aligned}
$$

Also possible for the neutral B.

CP violation in decay

CPV in decay: $|\bar{A} / A| \neq 1$: how do we get there?

$$
\begin{aligned}
& A_{f}=\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)} \\
& \bar{A}_{\bar{f}}=\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}
\end{aligned}
$$

In general, A is a sum of amplitudes with strong phases δ_{i} and weak phases ϕ_{i}. The amplitudes for anti-particles have same strong phases and opposite weak phases ->

$$
\begin{aligned}
\left|\frac{\bar{A}_{\bar{f}}}{A_{f}}\right| & =\left|\frac{\sum_{i} A_{i} e^{i\left(\delta_{i}-\varphi_{i}\right)}}{\sum_{i} A_{i} e^{i\left(\delta_{i}+\varphi_{i}\right)}}\right| \\
\left|A_{f}\right|^{2}-\left|\bar{A}_{\bar{f}}\right|^{2} & =\sum_{i, j} A_{i} A_{j} \sin \left(\varphi_{i}-\varphi_{j}\right) \sin \left(\delta_{i}-\delta_{j}\right)
\end{aligned}
$$

CPV in decay: need at least two interfering amplitudes with different weak and strong phases.

CP violation in mixing

SP in mixing: $|q / p| \neq 1$

$$
\text { (again }|\lambda| \neq 1)
$$

In general: probability for B to turn into an anti- B can differ from the probability for an anti-B to thum into a B.

$$
\begin{aligned}
& \left|B_{\text {phys }}^{0}(t)\right\rangle=g_{+}(t)\left|B^{0}\right\rangle+(q / p) g_{-}(t)\left|\bar{B}^{0}\right\rangle \\
& \left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle=(p / \overparen{q}) g_{-}(t)\left|B^{0}\right\rangle+g_{+}(t)\left|\bar{B}^{0}\right\rangle
\end{aligned}
$$

Example: semileptonic decays:

$$
\begin{aligned}
\left\langle l^{-} \nu X\right| H\left|B_{\text {phys }}^{0}(t)\right\rangle & =(q / p) g_{-}(t) A^{*} \\
\left\langle l^{+} \nu X\right| H\left|\bar{B}_{\text {phys }}^{0}(t)\right\rangle & =(p / q) g_{-}(t) A
\end{aligned}
$$

CP violation in mixing

$$
\begin{aligned}
& a_{s l}=\frac{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow l^{+} v X\right)-\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow l^{-} v X\right)}{\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow l^{+} v X\right)+\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow l^{-} v X\right)}= \\
& =\frac{|p / q|^{2}-|q / p|^{2}}{|p / q|^{2}+|q / p|^{2}}=\frac{1-|q / p|^{4}}{1+|q / p|^{4}}
\end{aligned}
$$

-> Small, since to first order $|\mathrm{q} / \mathrm{p}| \sim 1$. Next order:

$$
\frac{q}{p}=-\frac{\left|M_{12}\right|}{M_{12}}\left[1-\frac{1}{2} \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)\right]
$$

Expect $\mathrm{O}(0.01)$ effect in semileptonic decays

CP violation in the interference between decays with and without mixing

$$
\begin{aligned}
& a_{f_{C P}}=\frac{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)-P\left(B^{0} \rightarrow f_{C P}, t\right)}{P\left(\bar{B}^{0} \rightarrow f_{C P}, t\right)+P\left(B^{0} \rightarrow f_{C P}, t\right)}= \\
& =\frac{\left|(p / q) g_{-}(t) A_{f_{C P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}-\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{C P}}\right|^{2}}{\left|(p / q) g_{-}(t) A_{f_{c P}}+g_{+}(t) \bar{A}_{f_{C P}}\right|^{2}+\left|g_{+}(t) A_{f_{C P}}+(q / p) g_{-}(t) \bar{A}_{f_{c P}}\right|^{2}}= \\
& =\frac{\left|(p / q) i \sin (\Delta m t / 2) A_{f_{c P}}+\cos (\Delta m t / 2) \bar{A}_{f c p}\right|^{2}-\left|\cos (\Delta m t / 2) A_{f_{C P}}+(q / p) i \sin (\Delta m t / 2) \bar{A}_{f c P}\right|^{2}}{\left|(p / q) i \sin (\Delta m t / 2) A_{f_{C P}}+\cos (\Delta m t / 2) \bar{A}_{f_{C P}}\right|^{2}+\left|\cos (\Delta m t / 2) A_{f_{C P}}+(q / p) i \sin (\Delta m t / 2) \bar{A}_{f_{c P}}\right|^{2}}= \\
& =\frac{\left|(p / q)^{2} \lambda_{f_{C P}} i \sin (\Delta m t / 2)+\cos (\Delta m t / 2)\right|^{2}-\left|\cos (\Delta m t / 2)+\lambda_{f_{C P}} i \sin (\Delta m t / 2)\right|^{2}}{\left|(p / q)^{2} \lambda_{f C P} i \sin (\Delta m t / 2)+\cos (\Delta m t / 2)\right|^{2}+\left|\cos (\Delta m t / 2)+\lambda_{f_{C P}} i \sin (\Delta m t / 2)\right|^{2}}= \\
& =\frac{\left(1-\left|\lambda_{C C P}\right|^{2}\right) \cos (\Delta m t)-2 \operatorname{Im}\left(\lambda_{f_{C P}}\right) \sin (\Delta m t)}{1+\left|\lambda_{f_{C P}}\right|^{2}} \\
& =C \cos (\Delta m t)+S \sin (\Delta m t)
\end{aligned}
$$

Time evolution for B and anti-B from the $Y(4 s)$

The time evolution for the B anti-B pair from $Y(4 s)$ decay

$$
\begin{aligned}
& R\left(t_{t a g}, t_{f_{c P}}\right)=\left.e^{-\Gamma\left(t_{\text {tag }}+t_{\text {ccp }}\right.}\left|{\overline{A_{t a g}}}^{2}\right| A_{f_{c P}}\right|^{2} \\
& {\left[1+\left|\lambda_{f c p}\right|^{2}+\cos \left[\Delta m\left(t_{\text {tag }}-t_{f_{c P P}}\right)\right]\left(1-\left|\lambda_{f_{c P}}\right|^{2}\right)\right.} \\
& \left.-2 \sin \left(\Delta m\left(t_{t a g}-t_{f_{c P}}\right)\right) \operatorname{Im}\left(\lambda_{f_{c p}}\right)\right]
\end{aligned}
$$

$$
\text { with } \quad \lambda_{f c p}=\frac{q}{p} \frac{\bar{A}_{f c p}}{A_{f C P}}
$$

\rightarrow in asymmetry measurements at $Y(4 s)$ we have to use
$\mathrm{t}_{\text {faa }}-\mathrm{t}_{\text {fCP }}$ instead of absolute time t .

CP violation in SM

$$
\begin{gathered}
\mathcal{L}=V_{i j} \bar{U}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) D_{j} W_{\mu}^{+}+V_{i j}^{*} \bar{D}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) U_{j} W_{\mu} \\
\hat{\mathbb{I}} C P \\
\mathcal{L}_{C P}=V_{i j} \bar{D}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) U_{j} W_{\mu}+V_{i j}^{*} \bar{U}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) D_{j} W_{\mu} \\
\text { If } \mathrm{v}_{\mathrm{ij}}=\mathrm{v}_{\mathrm{ij}}{ }^{*} \vee \mathcal{L}=\mathcal{L}_{\mathrm{CP}} \text { CP is conserved }
\end{gathered}
$$

CKM matrix

define $\quad s_{12} \equiv \lambda, s_{23} \equiv A \lambda^{2}, s_{13} e^{-i \delta} \equiv A \lambda^{3}(\rho-i \eta)$

Then to $O\left(\lambda^{6}\right)$

$$
\begin{aligned}
& V_{u s}=\lambda, V_{c b}=A \lambda^{2}, \\
& V_{u b}=A \lambda^{3}(\bar{\rho}-i \bar{\eta}), \\
& V_{t d}=A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}), \\
& \operatorname{Im} V_{c d}=-A \lambda^{5} \eta, \\
& \operatorname{Im} V_{t s}=-A \lambda^{4} \eta, \\
& \bar{\rho}=\rho\left(1-\frac{\lambda^{2}}{2}\right), \bar{\eta}=\eta\left(1-\frac{\lambda^{2}}{2}\right)
\end{aligned}
$$

Decay amplitude structure

Quark diagrams: classified in tree (T), penguin and electroweak penguin contributions (P).

Measure the angles: need a pair of quark and anti-quark $\mathrm{q} \overline{\mathrm{q}}$ in the final state.

Describe the weak-phase structure of B-decay amplitude for the trasition $b \rightarrow q \bar{q} q^{\prime}$: sum of three terms with definite CKM coefficients:

$$
A\left(q \bar{q} q^{\prime}\right)=V_{t b} V_{t q^{\prime}}{ }^{*} P_{q^{\prime}}^{t}+V_{c b} V_{c q^{\prime}}{ }^{*}\left(T_{c \bar{c} q^{\prime}} \delta_{q c}+P_{q^{\prime}}^{c}\right)+V_{u b} V_{u q^{\prime}}{ }^{*}\left(T_{u \bar{u} q^{\prime}} \delta_{q u}+P_{q^{\prime}}^{u}\right)
$$

Decay amplitude structure: $q q s$ and $q q d$ decays

Use the unitarity condition to simplify the expressions for individual amplitudes:

$$
\begin{aligned}
& A(c \bar{c} s)=V_{c b} V_{c s}^{*}\left(T_{c \bar{c} s}+P_{s}^{c}-P_{s}^{t}\right)+V_{u b} V_{u s}^{*}\left(P_{s}^{u}-P_{s}^{t}\right), \\
& A(u \bar{u} s)=V_{c b} V_{c s}^{*}\left(P_{s}^{c}-P_{s}^{t}\right)+V_{u b} V_{u s}^{*}\left(T_{u \overline{u s}}+P_{s}^{u}-P_{s}^{t}\right), \\
& A(s \bar{s} s)=V_{c b} V_{c s}^{*}\left(P_{s}^{c}-P_{s}^{t}\right)+V_{u b} V_{u s}^{*}\left(P_{s}^{u}-P_{s}^{t}\right) .
\end{aligned}
$$

Nice feature: penguin amplitudes only come as differences.

$$
\begin{aligned}
& A(c \bar{c} d)=V_{t b} V_{t d}^{*}\left(P_{d}^{t}-P_{d}^{u}\right)+V_{c b} V_{c d}^{*}\left(T_{c \bar{c} d}+P_{d}^{c}-P_{d}^{u}\right), \\
& A(u \bar{u} d)=V_{t b} V_{t d}^{*}\left(P_{d}^{t}-P_{d}^{c}\right)+V_{u b} V_{u d}^{*}\left(T_{u \bar{u} d}+P_{d}^{u}-P_{d}^{t}\right), \\
& A(s \bar{s} d)=V_{t b} V_{t d}^{*}\left(P_{d}^{t}-P_{d}^{u}\right)+V_{c b} V_{c d}^{*}\left(P_{d}^{c}-P_{d}^{u}\right) .
\end{aligned}
$$

Decay asymmetry predictions - overview

Five classes of B decays.
Classes 1 and 2 are expected to have relatively small direct CP violations -> particularly interesting for extracting CKM parameters from interference of decays with and without mixing.

In the remaining three classes, direct CP violations could be significant, decay asymmetries cannot be cleanly interpreted in terms of CKM phases.

1. Decays dominated by a single term: b->cCs and b-> sss. SM cleanly predicts zero (or very small) direct CP violations because the second term is Cabibbo suppressed. Any observation of large direct CPviolating effects in these cases would be a clue to beyond Standard Model physics. The modes $\mathrm{B}^{+}->\mathrm{J} / \psi \mathrm{K}^{+}$and $\mathrm{B}^{+}->\phi \mathrm{K}^{+}$are examples of this class. The corresponding neutral modes have cleanly predicted relationships between CKM parameters and the measured asymmetry from interference between decays with and without mixing.

Decay asymmetry predictions - overview

2. Decays with a small second term: b->ccd and b->uud. The expectation that penguin-only contributions are suppressed compared to tree contributions suggests that these modes will have small direct CP violation effects, and an approximate prediction for the relationship between measured asymmetries in neutral decays and CKM phases can be made.
3. Decays with a suppressed tree contribution: b->uus. The tree amplitude is suppressed by small mixing angles, $\mathrm{V}_{\mathrm{ub}} \mathrm{V}_{\mathrm{us}}$. The no-tree term may be comparable or even dominate and give large interference effects. An example is $\mathrm{B}->\rho \mathrm{K}$.

Decay asymmetry predictions - overview

4. Decays with no tree contribution: b->ssd. Here the interference comes from penguin contributions with different charge $2 / 3$ quarks in the loop. An example is $B->K K$.
5. Radiative decays: $b->s \gamma$. The mechanism here is the same as in case 4 except that the leading contributions come from electromagnetic penguins. An example is $\mathrm{B}->\mathrm{K}^{*} \gamma$.

Decay asymmetry predictions - overview
 b->qqs

$B \rightarrow q \bar{q} s$ Decay Modes

Quark Process	Leading Term	Secondary Term	Sample B_{d} Modes	B_{d} Angle	Sample B_{s} Modes	B_{s} Angle
$b \rightarrow c \bar{c} s$	$\begin{gathered} V_{c b} V_{c s}^{*}=A \lambda^{2} \\ \text { tree }- \text { penguin }(c-t) \end{gathered}$	$\begin{aligned} & V_{u b} V_{u s}^{*}=A \lambda^{4}(\rho-i \eta) \\ & \text { penguin only }(u-t) \end{aligned}$	$J / \psi K_{S}$	β	$\begin{gathered} \psi \eta^{\prime} \\ D_{s} \bar{D}_{s} \end{gathered}$	β_{S}
$b \rightarrow s \bar{s} s$	$\begin{gathered} V_{c b} V_{c s}^{*}=A \lambda^{2} \\ \text { penguin only }(c-t) \end{gathered}$	$V_{u b} V_{u s}^{*}=A \lambda^{4}(\rho-i \eta)$ $\text { penguin only }(u-t)$	ϕK_{S}	β	$\phi \eta^{\prime}$	0
$\begin{aligned} & b \rightarrow u \bar{u} s \\ & b \rightarrow d \bar{d} s \end{aligned}$	$\begin{gathered} V_{c b} V_{c s}^{*}=A \lambda^{2} \\ \text { penguin only }(c-t) \end{gathered}$	$\begin{aligned} & V_{u b} V_{u s}^{*}=A \lambda^{4}(\rho-i \eta) \\ & \text { tree }+ \text { penguin }(u-t) \end{aligned}$	$\begin{gathered} \pi^{0} K_{S} \\ \rho K_{S} \end{gathered}$	competing terms	$\begin{gathered} \phi \pi^{0} \\ K_{S} K_{S} \end{gathered}$	competing terms
$\begin{aligned} & b \rightarrow c \bar{u} s \\ & b \rightarrow u \bar{c} s \end{aligned}$	$\begin{gathered} V_{c b} V_{u s}^{*}=A \lambda^{3} \\ V_{u b} V_{c s}^{*}=A \lambda^{3}(\rho-i \eta) \end{gathered}$	0	$D^{0} K \searrow$ common $\bar{D}^{0} K \nearrow$ modes	γ	$\begin{gathered} D^{0} \phi \searrow \text { common } \\ \bar{D}^{0} \phi \nearrow \text { modes } \end{gathered}$	γ

Decay asymmetry predictions - overview
 b->qqd

$$
b \rightarrow q \bar{q} d \text { Decay Modes }
$$

Quark Process	Leading Tem	Secondary Tem	Sample B_{d} Modes	B_{d} Angle (leading terms only)	Sample B_{s} Modes	B_{s} Angle (leading term)
$(\bar{c} d$						

Tracking: Belle central drift chamber

-50 layers of wires (8400 cells) in 1.5 Tesla magnetic field -Helium:Ethane 50:50 gas, Al field wires, CF inner wall with cathodes, and preamp only on endplates
-Particle identification from ionization loss (5.6-7\% resolution)

Requirements: Photons

Identification with $\mathrm{dE} / \mathrm{dx}$ measurement

dE/dx performance in a large drift chamber.

Essential for hadron identification at low momenta.

