

- TOP performance vs paramters
- Impact on the design
- Summary

Likelihood for TOP

Log likelihood probability for a given mass hyphothesis:

$$\log \mathcal{L} = \sum_{i=1}^{N} \log(\frac{S(x_{ch}, t) + B(x_{ch}, t)}{N_e}) + \log P_N(N_e)$$

Where

 \boldsymbol{N} is the measured number of photons,

 $N_e = N_S^{exp} + N_B^{exp}$ is the expected number of photons (signal+background), $S(x_{ch}, t)$ is 2D distribution of signal photons, $B(x_{ch}, t)$ is 2D distribution of background photons and $P_N(N_e)$ is the Poisson probability of mean N_e to get N photons.

Distributions S and B are normalised in the way:

$$\sum_{x_{ch}} \int_0^{t_m} S(x_{ch}, t) dt = N_S^{exp}, \qquad \sum_{x_{ch}} \int_0^{t_m} B(x_{ch}, t) dt = N_B^{exp}$$

Sum runs over all channels x_{ch} and integration over full TDC range.

Note: $S(x_{ch}, t)$ and N_S^{exp} are mass hypothesis dependent.

Parametrization of TOP distribution

- The goal: find analytical expressions for $n_k(x_{ch})$, $t_k(x_{ch})$ and $\sigma_k(x_{ch})$
- ✦ Geometric view of TOP detection: intersection of Čerenkov cone with a plane
 - \rightarrow well known, quadratic equations
 - \rightarrow analytical solutions should exist

Toward the solution ...

Coordinate system of Q-bar:

z-axis along Q-bar, parallel to z-axis of Belle

y-axis perpendicular to Q-bar (along smalles dimension)

origin in the centre of Q-bar

- Particle traversing the Q-bar at polar angles θ and ϕ
- Čerenkov photon emitted at point $\vec{r}_0 = (x_0, y_0, z_0)$ with polar angles θ_c and ϕ_c in respect to particle direction.
- The photon directional vector, expressed in Q-bar system, is:

$$\vec{k} = \begin{pmatrix} k_x \\ k_y \\ k_z \end{pmatrix} = \begin{pmatrix} \cos\phi(\cos\theta\sin\theta_c\cos\phi_c + \sin\theta\cos\theta_c) - \sin\phi\sin\theta_c\sin\phi_c \\ \sin\phi(\cos\theta\sin\theta_c\cos\phi_c + \sin\theta\cos\theta_c) + \cos\phi\sin\theta_c\sin\phi_c \\ \cos\theta\cos\theta_c - \sin\theta\sin\theta_c\cos\phi_c \end{pmatrix}$$

Toward analytical solution

• Intersection with detector plane at $z = z_D$:

$$z_D = z_0 + lk_z \quad \Rightarrow \quad l = \frac{z_D - z_0}{k_z}$$

if length of flight l > 0 the intersection is in photon's forward direction and the coordinates of photon hit are:

$$x_D = x_0 + lk_x, \quad y_D = y_0 + lk_y$$

Time of propagation of photon is

$$t_{TOP} = \frac{l}{c_0} n_g$$

 Total reflections: Imagine the detector plane divided into cells of a size of Q-bar transverse dimensions (a × b) total reflections - the same as folding the detector plane at cell bounderies Toward analytical solution

Number of reflections

$$n_x = nint(x_D/a)$$

 $n_y = nint(y_D/b)$

Coordinates at the middle cell (Q-bar exit window)

$$x = \begin{cases} x_D - an_x , & n_x = 0, \pm 2, \pm 4, \dots \\ an_x - x_D , & n_x = \pm 1, \pm 3, \dots \end{cases} \quad y = \begin{cases} y_D - bn_y , & n_y = 0, \pm 2, \pm 4, \dots \\ bn_y - y_D , & n_y = \pm 1, \pm 3, \dots \end{cases}$$

Total reflection requirement

$$|k_x| < \sqrt{1 - 1/n^2}$$
, $|k_y| < \sqrt{1 - 1/n^2}$

In summary - we've found:

$$t_{TOP}(\phi_c) = \frac{(z_D - z_0)n_g}{k_z(\phi_c)c_0} \qquad x_D(\phi_c) = x_0 + \frac{k_x(\phi_c)}{k_z(\phi_c)}(z_D - z_0)$$

 \rightarrow eliminate ϕ_c to get $t_{TOP}(x_D)$

The analytical solution _

• Detector plane coordinate of a channel x_{ch} for k-th reflection is

$$x_k = \begin{cases} ka + x_{ch} , & k = 0, \pm 2, \pm 4, \dots \\ ka - x_{ch} , & k = \pm 1, \pm 3, \dots \end{cases}$$

• By defining:

 $a_{k} = \frac{x_{0} - x_{k}}{z_{0} - z_{D}} \cos \theta \cos \theta_{c}$ $b_{k} = \frac{x_{0} - x_{k}}{z_{0} - z_{D}} \sin \theta \sin \theta_{c}$ $c = \cos \phi \cos \theta \sin \theta_{c}$ $d = \sin \phi \sin \theta_{c}$ $e = \cos \phi \sin \theta \cos \theta_{c}$

• The cosine of ϕ_c for k-th peak in channel x_{ch} is:

$$\cos\phi_c^{(k)} = \frac{-(b_k + c)(e - a_k) \pm d\sqrt{d^2 + (b_k + c)^2 - (e - a_k)^2}}{(b_k + c)^2 + d^2}$$

← and the peak position (using mean values for θ_c and n_g):

$$t_k = \frac{z_D - z_0}{\left(\cos\theta\cos\theta_c - \sin\theta\sin\theta_c\cos\phi_c^{(k)}\right)} \frac{n_g}{c_0}$$

The analytical solution

♦ Number of photons in the k-th peak:

$$n_k = N_0 l_{track} \sin^2 \theta_c \frac{\Delta \phi_c^{(k)}}{2\pi}, \qquad \Delta \phi_c^{(k)} = |\phi_c(x_k + \Delta x_{ch}/2) - \phi_c(x_k - \Delta x_{ch}/2)|$$

• Width of the k-th peak due to dispersion is proportional to t_k :

$$\sigma_k^{disp} = t_k \cdot \left| f(\phi_c^{(k)}) \frac{1}{n} \frac{dn}{de} + \frac{1}{n_g} \frac{dn_g}{de} \right| \sigma_e$$

where

$$f(\phi_c^{(k)}) = \frac{(\cos\theta\sin\theta_c + \sin\theta\cos\theta_c\cos\phi_c^{(k)})}{(\cos\theta\cos\theta_c - \sin\theta\sin\theta_c\cos\phi_c^{(k)})} \cdot \frac{\cos\theta_c}{\sin\theta_c}$$

 σ_e is the r.m.s. of Čerenkov photon energy distribution (given by QE of PMT) and e is photon energy.

Basics data for TOP used in simulation

Refractive index of quartz (Toru lijima):

$$n(\lambda) = 1.44 + \frac{8.20 \text{nm}}{\lambda - 126 \text{nm}} \qquad n_g(\lambda) = n(\lambda) + \frac{8.20 \text{nm}}{(\lambda - 126 \text{nm})^2}$$

Absorption length of quartz(J. Vav'ra):

$$\lambda_{abs} = 500 \mathrm{m} \left(\frac{\lambda}{442 \mathrm{nm}}\right)^4$$

- Quantum efficiency as for Hamamatsu R5900-M16
- ✤ 70% collection efficiency
- Using above data the basic TOP parameters are:

$$egin{aligned} N_0 &= 105 \ {
m cm}^{-1} \ &< e > = 3.3 \ {
m eV} \Rightarrow < n > = 1.473, < n_g > = 1.522 \ &\sigma_e &= 0.5556 \ {
m eV} \ &rac{1}{n} rac{dn}{de} = 1.02\%, & rac{1}{n_g} rac{dn_g}{de} = 2.96\% \end{aligned}$$

- PMT time resolution: σ_{PMT} = 50ps
- Q-bar dimensions: 40cm \times 2cm \times 255cm
- Coverage: Δx_{ch} =5mm, 64 active channels out of 80 per Q-bar exit window

TOP time resolution

 σ_{TOP}/t_{TOP} (%) 9 8 Relative time resolution due to dispersion, calculated with derived formulas 6 .5 $\sigma_k^{disp}/t_k \approx 1\% - 2\%$ 4 3 depends on track angle $\theta \longrightarrow$ 2 1 0 0 50 100 150 200 Peak shape ($B \rightarrow \pi \pi$ tracks) Mean 6000 RMS Slightly asymmetric but can be well ap-5000 proximated by Gaussian function 4000 $g(t - t_k; \sigma_k) = \frac{n_k}{\sqrt{2\pi\sigma_k}} e^{-\frac{(t - t_k)^2}{2\sigma_k^2}}$ 3000 2000 1000 $\sigma_k = \sigma_k^{disp} \oplus \sigma_{PMT}$ 0 -2 0 -.5 -4 -3 -1 1

with

4

 $(t-t_k)/\sigma_k$

.5

2

3

For two different time resolutions

Impact of background level

Number of photons versus $\cos \theta$ for $B \to \pi \pi$ tracks (and a fully active PMT surface)

Single side equipped vs both sides

Design issues: Segmentation in y?

Pile-up within the same event becomes highly probable.

Assuming that the electronics will not be fast enough to handle double pulses with few ns separation: what to do?

```
.... segmentation in y ? ....
```

Design issues: pile-up impact

Simulate pile-up; assumed: 50 ps t_{TOP} resolution, 20 background hits per bar, constant fraction discrimination interval 5 ns.

Summary

- Likelihood calculated analytically
- Simulation code set-up, running
- Add also a simple electronics pile-up simulation
- TOP performance was studied vs various parameters
- Impact on the design:
 - advisable to equip both bar sides (more photons, uniform response)
 - segmentation in y would be welcome (less pile-up)

Single side equipped vs both sides

Simulate pile-up; assumed: 50 ps t_{TOP} resolution, 20 background hits per bar, constant fraction discrimination interval 5 ns.

